CCI Research fellowships - 2015 cohort

A summary of CCI Research fellowships from the 2015 cohort

Fellowship projects

  1. Charles Robert: EXtending the Performance of AerGom to explore New aerosol related Species and to Improve OzoNe retrieval (EXPANSION)
  2. Sophie Vandenbussche: MIneral DUst SOurces using vertical profile information retrieved from IASI radiances (MIDUSO)
  3. Luca Lelli: STatistics of AeRosol and CLouds INTeractions from satellite (STARCLINT)
  4. Mathias Forkel: CCI data for assessing SOil moisture controls on FIre Emissions (CCI4SOFIE)


Name: Charles Robert

Aerosols and ozone are particularly closely related climate variables. From a retrieval point of view, both affect significantly the extinction of the measured signal in the UV-Vis spectral region, making their distinction difficult in some cases. More fundamental is their link through atmospheric interactions, aerosols playing a crucial role in ozone physico-chemistry and ozone depletion. The algorithm used to produce stratospheric aerosol records in Aerosol_CCI is AerGom, a GOMOS retrieval algorithm optimized for stratospheric aerosols, based on lessons learned from the operational GOPR algorithm. The main output provided by AerGom is aerosol extinction provided over a large spectral range. Ozone is provided as a by-product, together with other ozone depleting gases such as NO2 and NO3. The EXPANSION project will explore, as its primary objective, the possibilities and performances of AerGom in the observation of ozone and ozone depleting trace gases. The aim is to obtain good quality vertical trace gas profiles, while keeping or improving the quality of aerosol extinction data. Cross-ECV consistency between stratospheric ozone and aerosol vertical profiles will be assessed using Ozone_CCI time series. Extending the use of AerGom toward Ozone_CCI scope is also expected to bring about a welcome feedback for further algorithm development in Aerosol_CCI.

Publications:

Vanhellemont, F.; Mateshvili, N.; Blanot, L.; Robert, C. É.; Bingen, C.; Sofieva, V.; Dalaudier, F.; Tétard, C.; Fussen, D.; Dekemper, E.; Kyrölä, E.; Laine, M.; Tamminen, J. & Zehner, C. "AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations -- Part 1: Algorithm description" Atmospheric Measurement Techniques, 2016, 9, 4687-4700, DOI: 10.5194/amt-9-4687-2016

Robert, C. É.; Bingen, C.; Vanhellemont, F.; Mateshvili, N.; Dekemper, E.; Tétard, C.; Fussen, D.; Bourassa, A. & Zehner, C. "AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations -- Part 2: Intercomparisons" Atmospheric Measurement Techniques, 2016, 9, 4701-4718, DOI:10.5194/amt-9-4701-2016

Bingen, Christine, Robert, Charles,  Stebel, Kerstin,  Brühl, Christoph,  Schallock, Jennifer, Vanhellemont, Filip, Mateshvili, Nina, Höpfner, Michael, Trickl, Thomas, Barnes, John, Jumelet, Julien, Vernier, J, Popp, Thomas, de Leeuw, Gerrit, Pinnock, Simon, 2017, Stratospheric aerosol data records for the climate change initiative: Development, validation and application to chemistry-climate modelling, Remote Sensing of Environment (2017), http://dx.doi.org/10.1016/j.rse.2017.06.002 .

Name: Sophie Vandenbussche

Title: MIneral DUst SOurces using vertical profile information retrieved from IASI radiances “MIDUSO”

Airborne mineral dust is a climate active aerosol, with high global burden and an anthropogenic component linked to the land use. The objective of the project is to study mineral dust sources, using for the first time mineral dust daily (morning and evening) almost global 3D atmospheric distribution using data from IASI, the dust profiles being a side product of dust aerosol optical depth generated by Aerosol_cci. This datatset will be used to study Saharan and Asian mineral dust sources: geographic distribution, separation of source, pure transport and deposition areas, long term changes, partial quantification of the emissions, contribution to the diurnal cycle knowledge. To help interpret and to complete the information obtained from this new dataset, we will use land cover information and vegetation index seasonality data (obtained from the land cover CCI project).

Publications:

Vandenbussche, S. and De Mazière, M., 2017, African mineral dust sources: a combined analysis based on 3D dust aerosols distributions, winds and surface parameters, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-809 

Name: Luca Lelli

Title: STatistics of AeRosol and CLouds INTeractions from satellite “STARCLINT”

The goal of the STatistics of AeRosol and CLouds INTeractions from satellite (STARCLINT) project is to obtain a quantitative assessment of the interactions between suspended aerosol particles and clouds.  The long-term observational record enables the assessment of robust statistical relationships between atmospheric particulate and clouds, despite the superimposed modulation of regional to continental and mesoscale meteorology. STARCLINT will make use of the data sets generated within the ESA Aerosol_cci and Cloud_cci activities and, with the addition of complementary datasets, will identify correlations between aerosol particles and cloud in specific regimes across the globe for a time window of 20+ years. The outcome of STARCLINT will be therefore useful not only to the CCI working groups by building a bridge between their respective communities, but also to the climate model user groups by making a step toward an improved knowledge of the hydrological cycle. The work will in addition examine ocean-aerosol, ocean-cloud interactions. 

Publications:

Lelli, L., Weber, M., & Burrows, J. P. (2016). Evaluation of SCIAMACHY ESA/DLR Cloud Parameters Version 5.02 by Comparisons to Ground-Based and Other Satellite Data. Frontiers in Environmental Science, 4, 43. http://doi.org/10.3389/fenvs.2016.00043

Name: Mathias Forkel

Title: CCI data for assessing SOil moisture controls on FIre Emissions “CCI4SOFIE”

The objective of CCI4SOFIE is to improve the understanding of the links between climate and fire and improve estimates of global biomass burning emissions. The ESA CCI datasets of soil moisture, fire, land cover, greenhouse gases and aerosols, ESA DUE GlobEmission, and ESA STSE BIOMASAR biomass data in combination with European and non-European EO datasets of carbon pools and vegetation activity (NDVI, FAPAR) will be used to 1) empirically identify spatial-temporal patterns of soil moisture-vegetation-fire interactions, 2) to constrain and optimize a state-of-the-art dynamic global vegetation-fire model, and to 3) make projections of future soil moisture-vegetation-fire interactions and fire emissions.

Publications:

Forkel, M., Dorigo, W., Lasslop, G., Teubner, I., Chuvieco, E., Thonicke, K. (2016). A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geoscientific Model Development 10, 4443-4476. doi:10.5194/gmd-10-4443-2017

Teubner, I.E., Forkel, M., Jung, M., Liu, Y.Y., Miralles, D.G., Parinussa, R., van der Schalie, R., Vreugdenhil, M., Schwalm, C.R., Tramontana, G., Camps-Valls, G., Dorigo, W.A. (2018). Assessing the relationship between microwave vegetation optical depth and gross primary production. International Journal of Applied Earth Observation and Geoinformation 65, 79–91. doi:10.1016/j.jag.2017.10.006

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P.D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S.I., Smolander, T., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185-215. doi:10.1016/j.rse.2017.07.001