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e Creation of a continuous, precise, global, 3-
dimensional, multi-year ozone data set with
good temporal and spatial coverage to
attribute and quantify short- and long-term
fluctuations and trends

» Determination of hemispheric differences and
vertical dependence

» Evaluation of natural and anthropogenic forcing

» Assign dynamical and chemical mechanisms to
ozone changes
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Understanding of dynamical, chemical and
radiative processes (including feedback
mechanisms) in an atmosphere with
enhanced greenhouse gas concentrations

Insight of stratosphere-troposphere coupling
In a future climate

Robust prediction of ozone return date to
historical levels and further evolution of the
ozone layer

Determination of the role of the stratosphere
for climate and weather




Climate-Ozone Connections
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Evaluation and prediction
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Evaluation and prediction

Standard deviation: A measure for internal variability
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TO3 ratio 50™-90°

TO3 ratio 50-90°
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e Consistent multi-decadal, global time series of
all ozone total column (TC) data

— combination of European satellite data sets
with respective US data sets (1979 — today)

« Consistent multi-year, global time series of
ozone profiles (i.e. NP and LP)

- conflation of available satellite data sets



 What can be done better with improved data
sets?

Process-oriented investigations, e.g. studying interactions
of dynamical, chemical and radiative processes

Attribution of (natural) ozone fluctuations and
determination of (anthropogenic) trends

Investigation of links between climate change and
atmospheric chemistry and composition, e.g. the impact of
climate change on the recovery of the ozone layer (“super-
recovery”)

Evaluation of the role of the stratosphere for (surface)
climate change and weather

Numerical modelling = climate and (seasonal) weather
prediction
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 |nitiation of coordinated activities between
different groups using different space-borne
measurements and retrieval algorithms (e.g.
linking MIPAS retrieval teams within RR
exe)rcise, linking ENVISAT Iinstrument teams,
etc

» Consolidation of European position in Earth
observation (e.g. role in SI*N initiative on
assessment of ozone profile changes)

o Effective discussions and agreements
between data producers and the user
community, e.d. climate modellers, ECMWF
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e Sea Surface Temperature
(SST)

Impact of tropical SST Fan) ((FE), 4 P\
changes on tropical s DgA
upwelling, the Brewer-
Dobson circulation
and ozone transport
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— Example for climate- Idealised schematic of the two branches of
ozone connection the meridional circulation in the stratosphere

and its wave driving

Garny et al., 2011
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*SPARC -initiatives, e.g. the CCM
validation activity (CCMVal)

[*Stratospheric Processes And their Role in Climate]




e Confrontation of

— L2 (TC and NP),

— L3 (TC, NP, and LP), and

— L4 (NP)

ozone data products for the years 2007 and 2008 with
data derived from CCM simulations performed in
nudged mode (i.e. relaxed to meteorological re-
analyse data)

* Quantitative comparison of L3 (TC and LP) time series
(2002-2011); evaluation of respective CCM data

* First assessment of temporal and spatial evolution of the
stratospheric ozone layer after the peak in atmospheric
chlorine loading



Product
identifier

TC_L2_GOME

Source/
Processing
center

BIRA/DLR

Time periods

95 96 97 98 99 00 01 02 03 04 05 06 O7 08 09 10 11

Level-2 Data Sets

TC_L2_SCIA BIRA/DLR

TC_L2 GOME2 | BIRADLR

NP L2 GOME | RAL/KNMI ]

NP_L2_SCIA RAL/KNMI

NP_L2_OMI KNMI

NP_L2 GOME2 | RAL/KNMI
Level-3 Data Sets

TC_L3_MRG DLR/BIRA

NP_L3 MRG RAL/KNMI ]

LP_L3_SCIA I[UP-Bremen

LP L3 MIPAS | TBD* ]|

LP L3 GOMOS | FMI

LP L3 OSIRIS | SASK

LP L3 _MRG EOST-3 team ]
Level-4 Data

NP_L4 MRG KNMI




Product Source/ Time periods
identifier Processing

center! 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11+

Level-2 Data Sets

TC_L2_GOME BIRA/DLR
TC_L2_SCIA BIRA/DLR
TC_L2 GOME2 | BIRA/DLR
NP_L2_GOME RAL/KNMI

NP_L2_SCIA RAL/KNMI
NP_L2_OMI KNMI
NP_L2 GOME2 | RAL/KNMI
LP_L2_SCIA TBD?

LP_L2_MIPAS TBD?
LP_ L2 GOMOS | TBD?
LP_L2_OSIRIS SASK

Level-3 Data Sets

TC L3 MRG DLR/BIRA
NP_L3_MRG RAL/KNMI
LP_L3 SCIA IUP-Bremen
LP_L3 MIPAS TBD

LP_L3 _GOMOS | FMI

LP_L3 OSIRIS SASK
LP_L3 MRG EOST-3 team

Level-4 Data Sets
NP_L4 MRG




e Better understanding of errors and

determination of uncertainties

 Benchmark for future pursuing measure-
ments and model evaluation

 Will enable consistent investigations of
ozone fluctuations and trends In
— tropical and extra-tropical regions

— the upper troposphere and the lower, middle,
and upper stratosphere



