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e Science challenges: main questions.

* Project response to those challenges
e Advances and difficulties
e Anticipated outcomes.
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Science challenges

e What is the actual magnitude of fire impacts?
— How much area is burned annually?
— How much biomass is actually consumed?

— What is the share of biomass burning in total GHG
emissions?

— What is the role of fire in carbon accounting? Is
biomass burning “carbon neutral”?

e What are the recent trends in fire activity?
e What factors are behind fire occurrence?
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Fire factors
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Impacts of recent warming on fire

occurrence
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Trends in fire activity
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Fire Impacts
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Figure 2. Global distribution of
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Fire emissions:

April 30, 2000

Emissions are estimated as
a function of gas
concentrations or emitted

energy

Cctober 30, 2000
Carbon Monoxide Concentrafion (parts per billlon)

(Em=f(Fire Radiate Power)) 2
Source: MOPITT
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Fire emissions:

Bottom-up approach
Emissions =

burned area
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Average carbon emissions over 1997-2009 were 2.0 PgC year!
with considerable interannual variability.
Van der Werf et al., 2010: Journal of Atmospheric Science, GFED v3



¢How much area is actually burned

every year? (‘&\ﬂ

* Inconsistencies between RS products and
official forest fire statistics.

* Inconsistencies between RS products.
e Internal uncertainty of each RS product.
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Different BA estimations

 FAO (FRA2010): 0.6 Mkm?. Only 78 countries
are covered.

* RS products:
— L3JRC: 3.5 - 4.5 Mkm? (2000-07)
— MCD45 ¢5: 3.3 - 3.6 Mkm? (2000—-2006)
— GFED v2: 2.97 — 3.74 Mkm? (2001-2004)
— GFED v3: 3.39 - 4.31 Mkm? (1997-2009).
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Average area of forest annually affected by fire by country, 2005
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MCD45 - GFED3

Uncertainty in BA
estimation

% of BA from different |
satellite products

Red: over estimation
Blue: under estimation

(Giglio et al., 2010).
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. Refine definition of user requirements (GCOS
are unrealistic and unfocused).

. Improve current estimations of global burned
area. Validate and intercompare BA global
products.

. Test improvements of climate-vegetation-
carbon models with new BA data.
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Project phases

1. Improve GCOS requirements: URD and PSD.
2. Generation of BA time series:

Pre-processing.
Burned Area Algorithm Development.
Round-Robin exercise.

B w e

Validation / intercomparison.

3. Integration with carbon-emission models.
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Relations with other CCls

* Impacts of biomass burning on:
— Aerosols / GHG / Clouds.
— Land Cover.

e Factors affecting fire occurrence:

— Temperature-rainfall trends, particularly heat
waves and “El Nifo” episodes (climate prediction)

— Relations between fire and Tropical deforestation
(land cover).
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URD-PSD:

fire cci production targets

e Temporal series of BA over 10 selected areas
(500x500 km) (1995-2009):

— Assure spatial accuracy and stability.
— Consistency across multiple satellites

— Demonstrate full-time series available.

e Global coverage for five years (1999, 2000,
2003, 2005 and 2008):

— Demonstrate the semi-operational processing.
— Ensemble chain, bulk processing of data.
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Study sites
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Target products

e Burned pixels (mixing all three sensors
whenever possible):
— Monthly files with date of detection.
— Auxiliary data: Confidence level, land cover,
merging information

e Grid product:

— 0.5 x 0.5 degree (CGM), 15 day temporal ]. |
resolution.

— Auxiliary data: Sum of burned area, 5 |
Proportion of cell burned, Confidence level,
% of cloud-free observations, fire
distribution, Dominant vegetation burned
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In addition to standard tiles, the user will have a web tool to interactively select
his/her target site and apply for personal downloads
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Generation of BA time series:

Preprocessing chain

(A)ATSR, MERIS,
VGT

Landsat Mosaic DEM: SRTM or
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BA Algorithm MERIS FRS

Australia — 2005
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MODIS BA and HS

MERIS
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BA Algorithm VGT Results

: B vCoasAL -
Wver
VGT+MCDA45A1

VGT detection dates VGT vs MODIS
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Final merged product: pixel

SPOT ATSR/SPOT/M.FRS

1km 1km
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Grid outputs

1.0° (a*5)

Grid layer 1: Total sum area burned

Grid layer 2 (proportion burned)
resembles layer 1

Grid layer 3: Confidence levels

Currently only aggregation of ATSR and SPOT BA
(only recent delivery of MERIS FRS data with confidence levels)
Note different month from example shown in previous slide
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Validation

e Standard CEOS Validation protocol.
e Landsat-TM/ETM+ multitemporal change
detection:
— Temporal validation: study sites.
— Spatial validation: stratified random sampling.
e Validation metrics:
— Accuracy (agreement global-reference data).

— Error balance (over-under estimation).
— Temporal consistency.
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Examples

Brasil
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Global validation

160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W 0° 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E 180°
180° - \ \ ' \ ' ' ' f f f ' | f | |
80°N
3..,.
B0°N - 2
40°N -
20°N -

Legend
.| Global Areas
20°S - | BIOMES

Others biomes
Il Tropical Forest
[0 Temperate Forest

40°S -
Boreal Forest
Temperate grassland & savanna
Tropical and Subtropical savanna
s0°s - | M Mediterranean Forest o » _60°S
o
80°S Y Plate Carrée Projection - 80°S

Central Meridian: 0.00

180°

160°W 140°W 120°W 100°W 80°W 80°W 40°W 20°wW 0° 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E 180°



Fuzzy error matrix

Fuzzy approach Error matrix
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R-R exercise:

BA algorithms/products tested (‘&\ﬂ

Acronym Sensor Developer

GBS ATSR |ATSR Globcarbon project

ISA_ATSR ATSR Instituto Superior de Agronomia within the CCI project
UL _VGT Vegetation | University of Leicester within the R-R exercise
IFI_VGT Vegetation | Globcarbon project

UTL_VGT Vegetation | Globcarbon project

ISA_ VGT Vegetation | Instituto Superior de Agronomia within the CCI Project

UAH_MERIS | MERIS University of Alcala within the CCI project
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Selection of algorithms

e Algorithms were compared in pairs

e Ranking based on the number of times (study
sites) one algorithm was significantly better
than another (t-test at p<0.05)

e Example
Metric X Algorithm A Algorithm B
. Number of sites where
Algorithm A ] A is better than B
Algorithm B Number of sites where )

B is better than A
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R-R results

 BA algorithms/products tend to underestimate
(red areas), with exceptions (green areas)
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Main challenges of fire_CCI (ﬁ\j

e Data volume:

— More than 70,000 scenes for study sites have been
processed.

— Global processing is not feasible with current
processing powetr.

e Data availability:
— Temporal series are scarce with MERIS FRS.
— ATSR geometrical problems.
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Main challenges of fire_CCl (‘*\j

* BA mapping is competitive:
— None of the input sensors was designed for BA
mapping.
— Little experience with ESA sensors. None for

MERIS, partial for VGT and ATSR (Globcarbon and
L3JRC)

— MODIS products are well considered by science
community.

 Time constrains, particularly for BA algorithmes.

CMUG integration meeting, Toulouse, May 2012
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