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1. INTRODUCTION 

1.1 Purpose and Scope 

This Algorithm Theoretical Basis Document (ATBD) describes and justifies the algorithms 
used for obtaining sea surface temperature (SST) estimates within the ESA SST Climate 
Change Initiative project’s prototype processor. 

This version 2 ATBD covers the relevant SST CCI algorithms as implemented in the 
processing chain for generating products. This includes (1) identification of clear-sky 
pixels for valid retrieval, (2) the SST retrieval itself, (3) other algorithms for generating the 
SST estimate at standardised time of day and depth, and (4) analysis into spatio-
temporally complete multi-sensor products. Compared to the previous version 1 ATBD, 
this version differs principally in having included the theoretical basis for step (1). The 
sections addressing (2) to (4) are updated for clarity. Note that uncertainty information is 
addressed in these processes, and the approaches to uncertainty are consistent with the 
principles laid out in the Uncertainty Characterisation Report v2 (RD.306). 

1.2 Referenced Documents 

The following is a list of documents with a direct bearing on the content of this report.  
Where referenced in the text, these are identified as RD.n, where 'n' is the number in the 
list below: 

RD.38   Berrisford, P., et al (2009), The ERA-Interim archive, European Centre for 
Medium Range Weather Forecasts, Reading. 

RD.43 Eastwood S., K. R. Larsen, T. Lavergne, E. Nielsen, and R. Tonboe (2010), 
Global Sea Ice Concentration Reprocessing Product User Manual, Met 
Norway/Danish Meteorological Institute, EUMETSAT Ocean and Sea Ice SAF. 

RD.175  CCI Phase 1 (SST), Product Specification Document 

RD.181 Merchant C J, C P Old, O Embury and S N MacCallum (2008), Generalized 
Bayesian Cloud Screening: Algorithm Theoretical Basis version 2.1, School of 
GeoSciences, University of Edinburgh. Available from: 
http://www.geos.ed.ac.uk/gbcs/ATBv2.1c.pdf and via http://www.esa-sst-
cci.org 

RD.184 Embury, O., C. J. Merchant and G. K. Corlett (2012), A Reprocessing for 
Climate of Sea Surface Temperature from the Along-Track Scanning 
Radiometers: Initial validation, accounting for skin and diurnal variability, Rem. 
Sens. Env., pp62 - 78. DOI:10.1016/j.rse.2011.02.028 

RD.185  Embury, O. and C. J. Merchant (2012), A Reprocessing for Climate of Sea 
Surface Temperature from the Along-Track Scanning Radiometers: A New 
Retrieval Scheme, Rem. Sens. Env., pp 47 - 61, DOI: 
10.1016/j.rse.2010.11.020 

RD.186 Embury, O., C. J. Merchant and M. J. Filipiak (2012), A Reprocessing for 
Climate of Sea Surface Temperature from the Along-Track Scanning 
Radiometers: Basis in Radiative Transfer, Rem. Sens. Env., pp32 - 46, DOI: 
10.1016/j.rse.2010.10.016 

RD.213  Donlon, C.J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer 
(2012). The Operational Sea Surface Temperature and Sea Ice Analysis 
(OSTIA) system, Remote Sensing of the Environment, 116, 140-158. 
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RD.221  Merchant C J, P Le Borgne, A Marsouin and H Roquet (2008), Optimal 
estimation of sea surface temperature from split-window observations, Rem. 
Sens. Env., 112 (5), 2469-2484. doi:10.1016/j.rse.2007.11.011 

RD.222  Gentemann, C. L., P. J. Minnett, and B. Ward (2009), Profiles of ocean 
surface heating (POSH): A new model of upper ocean diurnal warming, J. 
Geophys. Res., 114, C07017, doi:10.1029/2008JC004825. 

RD.226  MacCallum and Merchant (2012), SST CCI Algorithm Selection Report, 
http://www.esa-sst-cci.org/ 

RD.227  Fairall, C., E. Bradley, J. Godfrey, G. Wick, J. Edson, and G. Young (1996), 
Cool-skin and warm-layer effects on sea surface temperature, J. Geophys. 
Res., 101(C1), 1295-1308. 

RD.231 CLAVR-X installation instructions, 
https://groups.ssec.wisc.edu/users/wstraka/aix-clavr-x-code/installing-clavr-x-
on-your-own-machine 

RD.232  SST_CCI Multi-sensor Match-up Dataset Specification, SST_CCI-REP-UoL-
001 

RD.239 Roberts-Jones, J., Fiedler, E. K. and M. Martin (2012), Daily, global, high-
resolution SST and sea-ice reanalysis for 1985-2007 using the OSTIA system, 
J. Climate, doi:10.1175/JCLI-D-11-00648.1, in press. 

RD.253  Merchant, C. J., & Le Borgne, P. (2004). Retrieval of sea surface temperature 
from space based on modeling of infrared radiative transfer: Capabilities and 
limitations. Journal of Atmospheric and Oceanic Technology, 22(11), 
1734−1746. 

RD.262  Horrocks L. A., Candy B., Nightingale T. J., Saunders R. W., O’Carroll A., and 
Harris A. R., Parameterisations of the ocean skin effect and implications for 
satellite-based measurement of sea surface temperature. J. Geophys. Res., 
Vol. 108(C3), 3096, doi:10.1029/2002JC001503, 2003 

RD.263 Kantha L.H., and Clayson C.A., An improved mixed layer model for 
geophysical applications. J. Geophys. Res. Vol. 99 (C12), 25235–25266, 
1994. 

RD.264  Lisa A. Horrocks, Andrew R. Harris, and Roger W. Saunders, Modelling the 
diurnal thermocline for daytime bulk SST from AATSR, NWP FRTR No. 418, 
UKMO, 2003. 

RD.265  Gentemann, C. L., P. J. Minnett, P. Le Borgne, and C. J. Merchant (2008), 
Multi-satellite measurements of large diurnal warming events, Geophys. Res. 
Lett., 35, L22602, doi:10.1029/2008GL035730. 

RD.266  Mark Filipiak, Diurnal Adjustment Model Selection, 2010 

RD.273 Merchant C J, Algorithm Theoretical Basis Document 0, 2012, SST-CCI-
ATBDv0-UOE-004-Issue 1 (Accept-Signed).pdf 

RD.274 Killie, M. A., Ø. Godøy, S. Eastwood and T. Lavergne: ATBD for EUMETSAT 
OSI SAF Regional Ice Edge Product, v1.1, 2011. 
http://osisaf.met.no/docs/osisaf_ss2_atbd_ice-edge-reg_v1p1.pdf  

RD.275 Roberts-Jones, J., Fiedler, E. K. and M. Martin (2011), Met Office Technical 
Report 561: Description and assessment of the OSTIA reanalysis, Met Office. 
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RD.276 Daley, R. (1991), Atmospheric data analysis. Cambridge University Press. 

RD.278  Hollingsworth, A. and P. Lonnberg (1986). The statistical structure of short-
range forecast errors as determined from radiosonde data. Part 1: The wind 
field. Tellus, 38A, 111-136. 

RD.280  Bell, M.J., A. Hines and M.J. Martin (2003). Variational assimilation evolving 
individual observations and their error estimates. Met Office Ocean 
Applications technical note no. 32. Available from Met Office, Fitzroy Rd, 
Exeter, UK. 

RD.294  Jonah Roberts-Jones, Emma Fiedler, Matthew Martin, Alison McLaren, 
Improvements to the Operational Sea Surface Temperature and Sea Ice 
Analysis (OSTIA) system, UKMO Tech Document SST_CCI_TN_UKMO_002 

RD.295  Merchant, C. J., P. LeBorgne, H. Roquet and G. Legendre, Extended optimal 
estimation techniques for sea surface temperature from the Spinning 
Enhanced Visible and Infra-‐Red Imager (SEVIRI), in press Rem. Sens. Env. 

RD.296  Merchant, C. J., O. Embury, N. A. Rayner, D. I. Berry, G. Corlett, K. Lean, K. 
L. Veal, E. C. Kent, D. Llewellyn-Jones, J. J. Remedios, and R. Saunders 
(2012), A twenty-year independent record of sea surface temperature for 
climate from Along Track Scanning Radiometers, J. Geophys. Res., 117, 
C12013, doi:10.1029/2012JC008400. 

RD.297  Watts, PD; Allen, MR; Nightingale, TJ, (1996) Wind speed effects on sea 
surface emission and reflection for the Along Track Scanning Radiometer 
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY Volume: 13 
Issue: 1 Pages: 126-141 DOI: 10.1175/1520-
0426(1996)013<0126:WSEOSS>2.0.CO;2 

RD.298  Mittaz J and A Harris, A physical method for the calibration of the AVHRR/3 
thermal IR channels Part II: in orbit comparison of the AVHRR longwave 
thermal IR channels on board MetOp-A with IASI, J Atmosph Oceanic 
Technol, 28, 1072, 10.1175/2011JTECHA1517.1 

RD.300  Stamnes, K., SC. Tsay, W. Wiscombe and K. Jayaweera, Numerically stable 
algorithm for discrete-ordinate-method radiative transfer in multiple scattering 
and emitting layered media, Appl Opt 27 (1988) (12), pp. 2502–2509. 

RD.301  Sea Surface Temperature (SLSTR) Algorithm Theoretical Basis Document, 
SLSTR-ATBD-L2SST-v2.4, August 2012 

RD.302  Chevallier, F., Sampled databases of 60-level atmospheric profiles from the 
ECMWF analyses, SAF Programme: Research Report No. 4, 
EUMETSAT/ECMWF, 2001. 

RD.303  Tobin, D. & L. L. Strow (1994) A Compilation of First-order Line-mixing 
Coefficients for CO2 Q-branches, J. Quant. Spectrosc. Radiat. Transfer, 52, 
281. 

RD.304 Deshler, T., Hervig, M.E., Hofmann, D.J., Rosen, J.M. and Liley, J.B. (2003). 
Thirty years of in situ stratospheric aerosol size distribution measurements 
from Laramie, Wyoming (41N), using balloon-borne instruments. Journal of 
Geophysical Research 108(D5): doi: 10.1029/2002JD002514. issn: 0148-0227 

RD.306 SST CCI Uncertainty Characterisation Report v2, SST_CCI-UCR-UOE-002, 
2013. Available from www.esa-sst-cci.org 
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RD.307 Rodgers C D, Inverse Methods for Atmospheric Sounding, World Scientific, 
Singapore, ISBN 981-02-2740-X, 2000. 

RD.308 Bulgin C E, Eastwood S, Embury O, Merchant C J, Donlon C.  The Sea 
Surface Temperature Climate Change Initiative: Alternative Image 
Classification Algorithms for Sea-Ice Affected Oceans.  Remote Sensing of 
Environment.  Under review.  Submitted Jan 2013. 

RD.309 Hocking J, Rayer P, Saunders R, Matricardi M, Geer A and Brunel P.  RTTOV 
v10 Users Guide.  NWP SAF, The EUMETSAT Network of Satellite 
Application Facilities.  NWPSAF-MO-UD-023.  Version 1.5.  Date 12/01/2011 

RD.310 Thomas S M, Heidinger, A K, Pavolonis M J, Comparison of NOAA’s 
Operational AVHRR-Derived Cloud Amount to Other Satellite-Derived Cloud 
Climatologies, Journal of Climate, American Meteorological Society, Volume 
17, pages 4805-4822, 2004 

RD.311 Heidinger A. K., Evan A. T., Foster, M. J. and Walther, A.  A Naïve Bayesian 
Cloud-Detection Scheme Derived from CALIPSO and Applied within 
PATMOS-x, Journal of Applied Meteorology and Climatology, Volume 51, 
Pages 1129-1144, 2012. 

RD.312 NOAA Satellite and Information Service, National Environmental Satellite, 
Data and Information Service (NESDIS), US Department of Commerce, Camp 
Springs, noaasis.noaa.gov/NOAASIS/ml/avhrr.html, last modified 03/07/2013. 

RD.318 Hyvärinen, O., Karlsson, K-G. and Dybbroe, A. (1999), Investigations of NOAA 
AVHRR/3 1.6 imagery for snow, cloud and sunglint discrimination. Nowcasting 
SAF Visiting scientist report, SMHI, 
http://www.nwcsaf.org/HD/files/vsadoc/ottohyvarinen_vsa_report_full.pdf 

RD.319  Saunders, P. M., (1967), The temperature at the ocean-air interface, Journal 
of Atmospheric Science, 24, 269-273. 

RD.320 Fillipiak, M., (2008), Refractive indices (500-3500 cm-1) and emissivity (600-
3350 cm-1) of pure water and seawater, Dataset, 
http://hdl.handle.net/10283717   

RD.321 Závody, A. M., Mutlow, C. T., Llewellyn-Jones, D. T., (1995), A radiative 
transfer model for sea surface temperature retrieval for the along-track 
scanning radiometer, Journal of Geophysical Research: Oceans, 100, C1, 
937-952. 

1.3 Definitions of Terms 

The following terms have been used in this report with the meanings shown. 

Term Definition 

(A)ATSR (Advanced) Along track scanning radiometer 

AOD Aerosol optical depth 

ARC ATSR Reprocessing for Climate 

AVHRR Advanced Very High Resolution Radiometer 

ARGO Global array of observational profiling floats 
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CCI Phase 1 (SST) SST_CCI-ATBDV2-UOE-001 
SST CCI Algorithm Theoretical Basis Document v2 Issue 1 

  Page 9 

BT Brightness Temperature 

CCI Climate Change Initiative 

CLAVR-x Clouds from AVHRR Extended 

DJF December, January, February 

ECMWF European Centre for Medium-range Weather Forecasting 

EN3 Quality controlled subsurface temperature and salinity data set [RD.282] 

ERA-40 ECMWF Re-analysis covering 40 years 

FFM Fast Forward Model 

GAC Global Area Coverage 

GADS Global Aerosol Data Set 

GCOS Global Climate Observing System 

HadISST1 UKMO Hadley Centre Sea Ice and Sea Surface Temperature data set 
(version 1) 

JJA June, July, August 

LSD Local Standard Deviation 

LUTS Look-Up Tables 

MAP Maximum a posteriori 

ML Maximum Likelihood 

NRT Near Real Time 

NSIDC National Snow and Ice Data Center 

NOAA National Oceanic and Atmospheric Administration 

NWP Numerical Weather Prediction 

O-B Observation minus Background 

OE Optimal Interpolation 

OPAC the Optical Properties of Aerosols and Clouds dataset 

OSI-SAF Ocean and Sea Ice Satellite Application Facility (EUMETSAT) 

OSTIA Operational Sea Surface Temperature and Sea Ice Analysis 

PDF Probability distribution function 

QC Quality Control 
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RMSE Root Mean Square Error 

RTM Radiative Transfer Model 

RTTOV Radiative Transfer for the Television and Infrared Orbiting Satellite 
Operational Vertical Sounder 

SADIST Synthesis of ATSR Data Into Sea-surface Temperature. 

SMMR Scanning multichannel microwave radiometer 

S-O Simulation minus Observation 

SOAR Second Order Auto-Regressive 

SOZ Solar Zenith Angle 

SSM/I  Special Sensor Microwave/Imager 

SST-CCI Sea Surface Temperature Climate Change Initiative 

TCWV Total Column Water Vapour 

TOA Top Of Atmosphere 

VisRTM Visible Radiative Transfer Model 
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2. IDENTIFICATION OF OBSERVATIONS VALID FOR SEA 
SURFACE TEMPERATURE ESTIMATION 

Cloud screening is a fundamental pre-processing step for sea surface temperature (SST) 
retrieval.  Traditionally, threshold based techniques have been used to detect cloud but 
these often fail under difficult circumstances -- for example, in the detection of thin cirrus 
or low-level fog.  Two Bayesian cloud detection algorithms are presented here, one for 
the ATSR instruments which is described in this section, and the CLAVR-x algorithm 
which is used with the AVHRR instruments, described in section 2.2.  Both algorithms 
calculate the probability that an ocean pixel is clear-sky. For CLAVR-x sets of thresholds 
are placed on the probability to give a classification of clear, probably clear, probably 
cloud or cloud for each pixel.  The probabilistic approach enables the user to tailor the 
cloud screening stringency appropriately to their application.  For ATSR sea surface 
temperature (SST) retrievals within the CCI project a single threshold of 0.9 is set on the 
clear-sky probability to select cases for which SST is considered valid. 

2.1 Clear-sky Detection for Along Track Scanning Radiometers 

The Along Track Scanning Radiometer (ATSR) instruments make observations at infrared 
and visible wavelengths at two viewing angles: the nadir view between 0-22° and the 
forward view between 52-55°. Both views can be exploited to give additional information 
for cloud detection purposes. ATSR-1 made measurements in spectral bands centred at 
1.6, 3.7, 10.8 and 12 μm, whilst ATSR-2 and AATSR instruments had additional visible 
wavelength channels centred at 0.55, 0.66 and 0.87 μm.  The probability of clear sky is 
calculated by assessing the likelihood that the pixel is clear given the observations, 
background information, cloudy probability density function (PDF) look-up tables (LUTs) 
and simulations of clear-sky conditions.  

2.1.1 Algorithm Overview - General Principles of Bayesian Classifier 

The Bayesian classifier calculates a probability of clear-sky for any given pixel based on 
the satellite observations, prior information about the atmosphere and surface conditions 
and the respective errors in these variables.  Figure 2.1 shows a high level overview of 
the classification process.  The Bayesian classifier for the SST CCI processing takes 
European Centre for Medium-range Weather Forecasting (ECMWF) numerical weather 
prediction (NWP) reanalysis data as input to simulate clear sky brightness temperatures 
and top of the atmosphere reflectance.  The other inputs are ATSR satellite observations 
and cloudy PDF LUTs.  The Bayesian classifier provides the probability of clear-sky as 
output on a per pixel basis for use in conjunction with the SST data. 

This document is to be used with the ESA SST_cci Version 1 (v1) products.
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Figure 2.1. Flow chart showing overview of the classification process. Green 
parallelograms indicate input data, blue squares indicate processing steps. 

 

Figure 2.2 gives a more detailed overview of the steps involved in the Bayesian 
classification.  The inputs, auxiliary data, calculations and outputs are described in the 
following sections. 
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  Figure 2.2.  Bayesian classification steps for calculating clear-sky probability prior to 
SST retrieval.  Blue rectangles denote processing steps, blue diamonds decision 

making steps and green parallelograms data storage. 
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2.1.2 Inputs to Bayesian Classifier 

The Bayesian classifier uses a number of inputs including sensor data, numerical weather 
prediction data, radiative transfer model output and cloud.   

2.1.2.1 Sensor Data - Brightness Temperature, Reflectance 

The ATSR observations used in the Bayesian classifier form the observation vector, ࢟௢.  
The subset of channels used in the observation vector is dependent on time of day. 

The channels used in the cloud detection algorithm are present on all ATSR sensors and 
give consistency over the dataset time series.  The cloud detection algorithm is a dual 
view retrieval using data in the channels specified from both the nadir and forward views. 
The observation vector, ࢟௢, is defined under day conditions as, 

௢࢟  = ൦ ܤଵ.଺ܧܴ ଵܶ଴.଼ܤ ଵܶଶ.଴ܦܵܮଷ௫ଷ(ܤ ଵܶ଴.଼)൪ (2.1) 

and under night conditions as, 

௢࢟  = ൦ ܤ ଷܶ.଻ܤ ଵܶ଴.଼ܤ ଵܶଶ.଴ܦܵܮଷ௫ଷ(ܤ ଵܶ଴.଼)൪ (2.2) 

where:  

BT  denotes brightness temperature 

LSD  is the local standard deviation over a 3x3 pixel box 

RE  denotes reflectance  

1.6, 3.7, 10.8, 12.0 subscripts define the ATSR channel.   

The 10.8 and 12 μm brightness temperatures are used under all conditions and the 1.6 
and 3.7 μm channels are alternated on the basis of the solar zenith angle.  Daytime 
conditions are defined by a solar zenith angle less than 87.5 degrees, and nighttime 
conditions by solar zenith angles above 92.5 degrees.  For the twilight period between 
87.5-92.5 degrees no retrieval is made.  In addition to the spectral information, the local 
standard deviation in the 10.8 μm brightness temperature is used as a textural measure 
in the observational data. 

௜ܦܵܮ  = ඨ1 9ൗ ෍ ௜௢ݕ) − ଶଽ(〈௜௢ݕ〉 ୮୧୶ୣ୪ ୠ୭୶  (2.3) 

where: ࢕࢏࢟  is the 10.8 μm brightness temperature for a given observation. < ࢕࢏࢟ >  is the mean 10.8 μm brightness temperature across the 3x3 pixel box. 

 

This document is to be used with the ESA SST_cci Version 1 (v1) products.



  
CCI Phase 1 (SST) SST_CCI-ATBDV2-UOE-001 
SST CCI Algorithm Theoretical Basis Document v2 Issue 1 

  Page 15 

2.1.2.2 Auxiliary Data and Look Up Tables 

NWP data from the ECMWF are used in the radiative transfer forward modelling (section 
2.1.2.3) to simulate clear sky brightness temperatures and top of the atmosphere (TOA) 
reflectance.  The full background state vector contains all surface and atmospheric 
variables that can influence the calculated radiance. For the characterisation of the 
uncertainty in the clear-sky simulation results that is needed for the Bayesian calculation, 
only the dominant terms need be considered.  These terms are shown in the reduced 
state vector, ࢞௕, shown below. At nighttime (when only infra-red channels are used), the 
uncertainty with respect to windspeed and aerosol optical depth (AOD) is set to zero.  For 
ATSR-1 during the period of elevated stratospheric aerosol from the eruption of Mt 
Pinatubo, a fifth element describing the stratospheric aerosol is included in the state 
vector. For the rest of the record, the reduced state vector is: 

௕࢞  = ൦ ܵܵܶ௕ܸܹܶܥ௕࢛ଵ଴௕ܦܱܣ௕ ൪ (2.4) 

where: 

SST  is sea surface temperature  

TCWV  is total column water vapour ࢛ଵ଴  is the 10 m wind vector  

AOD  is aerosol optical depth. 

Reflectance/BT distributions given cloud probabilities are stored as empirical PDFs as 
these are difficult to model and cannot be assumed to be Gaussian.  The PDFs are 
generated using the entire ATSR time series of observations initially bootstrapped using 
the operational SADIST cloud mask to identify cloudy pixels.  Subsequently these were 
iterated once using the Bayesian cloud detection scheme as part of the ATSR 
Reprocessing for Climate (ARC) project.  This iteration enabled the inclusion of dual view 
data and refinement of the PDF dimensions.     

The probability density function (PDF) given the background state for each class of 
observation (clear or cloud) is expressed as a ‘spectral’ and ‘textural’ component (outlined 
in section 2.1.3), which are assumed to be independent.  For both cloud and clear 
classes, the textural component is an empirical PDF (captured as a look up table, LUT) 
generated as explained above. This is also the case for the spectral component for the 
cloud class. The clear-sky spectral PDF is calculated using the forward models based on 
the uncertainty of the elements in ࢞௕.  The dimensions, range and binsize of the 
respective PDFs (LUTs) are shown in the tables below.  These are chosen so that the 
resulting PDF is adequately smooth, for which we required that the numbers of 
observations used to build the LUTs was at least three orders of magnitude larger than 
the number of LUT bins. The satellite zenith angle dimension is used to separate the 
nadir and forward view PDFs.  Observations that fall outside the PDF dimensions are 
fixed to the edge of the PDFs for the Bayesian cloud detection. 

For the spectral probability under nighttime conditions a three channel brightness 
temperature PDF is used.  This includes a day/night flag as it is also used in conjunction 
with a visible channel PDF during the day. 
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Table 2.1. Cloud Nighttime Spectral PDF  

Dimension Unit Upper limit Lower limit Bin size Number of bins 
11µm BT – NWP SST K 10.00 -20.00 2.0 15 
11-12µm BT difference K 9.0 -1.00 0.2 50 
3.7-11µm BT difference K 10.00 -6.00 0.2 80 

NWP SST K 310.00 260.00 2.5 20 
Satellite zenith angle ° 60.00 0.0 30.0 2 

Day/Night ° 180.00 0.0 90.0 2 

Figure 2.3 shows some slices of the spectral PDF described in Table 2.1.  The PDFs are 
three-dimensional in brightness temperature space (11 μm BT–NWP SST, 11–12 μm BT 
and 3.7–11 μm BT).  For visualization purposes the PDFs have been collapsed along one 
of these dimensions and presented for nadir only data for two different NWP SST values.  
The 11–12 μm BT is plotted as a function of 11 μm BT–NWP SST in the top panel, and 
as a function of the 11-3.7 μm BT in the bottom panel.  The PDF shape and orientation 
shifts significantly between the two NWP SSTs in the slices presented indicating the 
importance of constraining the PDF as a function of all the constituent dimensions. 

 

Figure 2.3. Example thermal spectral PDFs for two NWP SST values. The top panel 
shows the 10.8 micron BT minus the NWP SST against the 10.8 minus 12 micron 

BT. The lower panel shows the 3.7 minus 10.8 micron BT against the 10.8 minus 12 
micron BT. PDF shapes show significant variation as a function of SST. 
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During the day, the observation vector includes both infrared and visible channel data.  
The PDFs for the infrared and visible components are assumed to be independent which 
is justified by the different physical processes determining radiance in the reflectance 
compared to thermal bands.  A reduced thermal spectral PDF based on the 10.8 and 12 
μm channels only is used in conjunction with a visible PDF based on the 1.6 μm channel. 

 

Table 2.2. Daytime two-channel thermal cloudy spectral PDF 

Dimension Unit Upper limit Lower limit Bin size Number of bins 
11µm BT – NWP SST K 10.00 -20.00 1.0 30 
11-12µm BT difference K 9.0 -1.00 0.2 50 

NWP SST K 310.00 260.00 1.0 20 
Satellite zenith angle ° 60.00 0.0 30.0 2 

Day/Night ° 180.00 0.0 90.0 2 

 

Table 2.3. Daytime reflectance cloudy spectral PDF 

Dimension Unit Upper limit Lower limit Bin size Number of bins 
1.6µm reflectance  1.00 0.0 0.01 100 
Solar zenith angle ° 95.00 0.0 2.5 38 

Satellite zenith angle ° 60.00 0.0 30.0 2 

Figure 2.4 shows a graphical representation of the dual view PDF for the 1.6 μm channel.  
The two panels show the dual view data for different solar zenith angles.  As the solar 
zenith angle increases the PDF becomes more spread out with a tendency towards 
higher reflectance in the nadir view.   At lower solar zenith angles the 1.6 μm nadir versus 
forward view PDF is closer to the 1:1 line.  The reflectance peak for relatively dark clouds 
may be the result of partially filled pixels flagged as cloud where some of the darker 
underlying ocean surface is also visible. 

 

Figure 2.4. Visible spectral dual view PDFs showing the 1.6 micron nadir versus 
forward view reflectance given cloudy conditions. 

A 10.8 μm textural PDF is a useful tool for cloud detection and is used alongside the 
spectral PDF for all classifications [Table 2.4]. Figure 2.5 shows the textural PDF under 
day and nighttime conditions for the nadir view data.  The cloudy PDF is much broader 
than the clear-sky PDF as cloud surfaces are more heterogeneous than the underlying 
sea surface over a 3x3 pixel [3x3 km] surface area.   
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Table 2.4. Textural PDF construction. Separate PDFs are generated for clear-sky 
and cloudy conditions. 

Dimension Unit Upper limit Lower limit Bin size Number of bins 
11 µm texture K 2.0 0.0 0.005 400 

Satellite zenith angle ° 60.0 0.0 30.0 2 
Day/Night ° 180.0 0.0 90.0 2 

 

 

Figure 2.5. 11 micron textural PDFs dependent upon time of day for cloud and 
clear-sky observations (nadir view only) 

A LUT is also developed for the prior clear-sky probability, which is a function of latitude 
and longitude.  The prior clear-sky probability was calculated  by counting the number of 
clear relative to total number of AATSR pixels for each location, i.e., using the following 
equation: 

 ܲ(ܿ) = ∑(ܿ୭)∑(ܿ୭) + ∑(ܿ̅୭) (2.5) 

where:  ܿ  denotes clear sky ܿ̅  denotes cloud ܲ(ܿ) was calculated at 1x1 degree resolution and the global distribution is shown in 
Figure 2.6.  The maximum prior probability of clear sky is 0.5, seen in the mid-Pacific and 
south-east Atlantic and Indian Oceans.  The Pacific and Atlantic oceans off the west-
coasts of South America and Africa are typically cloudier.  
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Figure 2.6. Global map of the prior probability of clear-sky generated from ARC 
processing of ATSR data. 

2.1.2.3 Forward model 

Two forward models are used in the cloud detection scheme.  RTTOV 10.2 is used for 
channels at infrared wavelengths (3.7, 11 and 12 μm) and VisRTM for solar channels (1.6 
μm) and solar corrections to the infrared channels.  Both calculate the tangent linear with 
respect to the elements of the reduced state vector (࢞௕) for the calculated brightness 
temperature or reflectance. 

RTTOV 10.2 is the most recent edition of a fast forward model (FFM) developed at the 
EUMETSAT NWP Satellite Application Facility to calculate atmospheric radiative transfer 
at infrared wavelengths [RD.309].  NWP atmospheric profile and surface conditions are 
used as input and the model is run at the ATSR geolocation tie-points at a resolution of 
25 x 32 km.  The outputs are then interpolated to the pixel location.  VisRTM is a single-
scattering model used to calculate TOA reflectance and to make solar corrections to the 
infrared channels [RD.181].  It is computationally faster than RTTOV 10.2 so is run at 
every pixel.   

2.1.2.4 Auxiliary Data for Pinatubo Aerosol Period 

The eruption of Mount Pinatubo (and Mount Hudson) in 1991 injected a significant 
amount of sulphate aerosol into the stratosphere that then decayed over a period of 
several years.  The injected sulphate aerosol falls into two modes – a fine mode and a 
coarse mode fraction.  The latter has a greater impact at infrared wavelengths and a 
correction is made to the simulated brightness temperatures to account for this [RD.186].  

The correction works by first determining the aerosol ‘mode’, which is a standardised 
brightness temperature impact (dBT) averaged over many aerosol scattering simulations 
[RD.186, RD.304] for an arbitrary volcanic aerosol optical depth.  dBT is dependent on 
the channel and the satellite zenith angle.  Next, the scaling of the dBTs (reflecting the 
variable amount of volcanic aerosol optical depth) is estimated as a function of latitude 
and for 3 day intervals during the ‘Pinatubo’ period. This is done by inference from the 
differential impact of volcanic aerosol on SST estimates in nadir-only mode (which are 
sensitive to aerosol) and in dual-view mode (which are designed to be insensitive to 
aerosol). Using the standardised dBT, the expected nadir minus dual view SST difference 
is calculated as a function of latitude.  Then the observed nadir minus dual difference is 
also calculated as a function of latitude using three-day averages.  The observed 
difference is divided by the expected difference to give an aerosol index that appropriately 
reflects the impact of the aerosol on infra-red window channels.  Adding the multiple of 
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the aerosol mode and the aerosol index then modifies the modelled clear-sky brightness 
temperatures. 

 

ܤ  ௖ܶ௛௔௡௡௘௟ = ܤ ௖ܶ௛௔௡௡௘௟ + ௖௛௔௡௡௘௟݁݀݋݉_݈݋ݏ݋ݎ݁ܽ	) ×  ௖௛௔௡௡௘௟) (2.6)ݔ݁݀݊݅_݈݋ݏ݋ݎ݁ܽ

where: 

BT  is brightness temperature 

aerosol_mode is the average brightness temperature impact from a standard amount of 
stratospheric aerosol (dBT, calculated as function of channel and satellite 
zenith angle) 

aerosol_index observed nadir minus dual view SST, divided by expected nadir minus 
dual view SST for the standard amount of aerosol. 

This brightness temperature adjustment is only made for ATSR-1 data.  Having applied 
this adjustment, the cloud detection procedure is run as for non-aerosol periods. 

2.1.3 Mathematical Description of Bayesian Classifier 

In discussing Bayes’ theorem, notation for conditional probability is used. Thus ܲ(ܤ|ܣ,  (ܥ
is the probability density for condition or observation ܣ given the assumption that 
conditions/observations ܤ and ܥ are the case. In this notation, cloud detection is the 
calculation of ܲ(ܿ|࢟௢,  ௕) -- i.e., the probability of the clear-sky condition, given the࢞
observations ࢟௢ and the prior information we have brought to the problem, ࢞௕. The 
Bayesian classifier calculates the likelihood that a pixel is a clear-sky (ܲ(ܿ|࢟௢,  ௕)) based࢞
on the satellite observations and prior information. Formally Bayes theorem applied to the 
problem of cloud detection can be expressed as: 

,௢࢟|ܿ)ܲ  (௕࢞ = ,௕࢞|௢࢟)ܲ (௕࢞)ܲ(௕࢞|௢࢟)ܲ(ܿ)ܲ(ܿ|௕࢞)ܲ(ܿ  
(2.7) 

where: ܿ  denotes clear-sky ࢟௢  is the observation vector  ࢞௕   is the state vector. 

2.1.3.1 Physical Principles and Equations 

The assumption can be made that the background state is independent of the clear-sky 
probability at the ATSR pixel scale (1x1 km).  Assuming ܲ(࢞௕|ܿ) =  then equation ,(௕࢞)ܲ
2.7 can be simplified to give: 

,௢࢟|ܿ)ܲ  (௕࢞ = ,௕࢞|௢࢟)ܲ (௕࢞|௢࢟)ܲ(ܿ)ܲ(ܿ  
(2.8) 

The probability of the observations given the background state, ܲ(࢟௢|࢞௕), can be 
expressed as the sum of the probabilities for each possible state (cloud ܿ̅	and clear ܿ). 

(௕࢞|௢࢟)ܲ  = ,௕࢞|௢࢟)ܲ(ܿ)ܲ ܿ) + ,௕࢞|௢࢟)ܲ(̅ܿ)ܲ ܿ̅) (2.9) 
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This can be rearranged to give the form of the equation used in the clear-sky probability 
calculation. 

,௢࢟|ܿ)ܲ  (௕࢞ = ቈ1 + ,௕࢞|௢࢟)ܲ(̅ܿ)ܲ ,௕࢞|௢࢟)ܲ(ܿ)ܲ(̅ܿ ܿ)቉ିଵ (2.10) 

ܲ(ܿ̅) is the prior probability of cloud and is equal to one minus the prior probability of 
clear-sky.   

 ܲ(ܿ̅) = 1 − ܲ(ܿ)  (2.11) 

2.1.3.2 Calculations 

The probability of the observations given the background state for either class (cloud or 
clear) is split into a spectral and textural component denoted by subscripts ‘s’ and ‘t’.  
These are assumed to be independent. 

,௕࢞|௢࢟)ܲ  ܿ) = ,௕࢞|௦௢࢟)ܲ ,௕࢞|௧௢࢟)ܲ(ܿ ܿ) (2.12) 

For the cloud class the spectral component of this equation is calculated from a 
probability density function (PDF) look up table as described in section 2.1.2.2.  For clear-
sky this is calculated using the radiative transfer model where the distribution is assumed 
to be Gaussian.  The spectral probability for clear-sky is defined as follows: 

,௕࢞|௦௢࢟)ܲ  ܿ) = ݁ቀିଵଶ∆௬೟(ࡴ೟ࡴ࡮ାࡾ)షభ∆௬ቁ2ࡴ|ߨ௧ࡴ࡮+ ଴.ହ|ࡾ  
(2.13) 

 is the error covariance in the background state vector propagated through the fast ࡴ࡮௧ࡴ
forward model.  The ࡴ matrix contains the tangent linear of the forward model. 

ࡴ  = డ࢟ೞ್డ(2.14)  ್࢞ 

This is expressed as the sensitivity of the forward model to changes in the reduced state 
vector (࢞௕).  For example, for the selection of channels used in the spectral calculation at 
nighttime, the H matrix is defined as follows. 

ࡴ  =
ێێۏ
ێێێ
ۍێێ
ܤ߲ ଷܶ.଻߲ܵܵܶ௕ ܤ߲ ଵܶ଴.଼߲ܵܵܶ௕ ܤ߲ ଵܶଶ.଴߲ܵܵܶ௕߲ܤ ଷܶ.଻߲ܸܹܶܥ௕ ܤ߲ ଵܶ଴.଼߲ܸܹܶܥ௕ ܤ߲ ଵܶଶ.଴߲ܸܹܶܥ௕߲ܤ ଷܶ.଻߲࢛ଵ଴௕ ܤ߲ ଵܶ଴.଼߲࢛ଵ଴௕ ܤ߲ ଵܶଶ.଴߲࢛ଵ଴௕߲ܤ ଷܶ.଻߲ܦܱܣ௕ ܤ߲ ଵܶ଴.଼߲ܦܱܣ௕ ܤ߲ ଵܶଶ.଴߲ܦܱܣ௕ ۑۑے

ۑۑۑ
ېۑۑ
 

(2.15) 

Under nighttime conditions the tangent linears with respect to wind speed and aerosol 
optical depth are set to zero. ࡮ is the background error covariance matrix and contains 
the errors of the components in the reduced state vector.  This can be specified as 
follows: 

࡮  = ێێۏ
ௌௌ்௕ߝ)ۍێ )ଶ 0.0 0.0 0.00.0 ஼ௐ௏௕்ߝ) )ଶ 0.0 0.00.0 0.0 ൫࢛ߝభబ௕ ൯ଶ 0.00.0 0.0 0.0 ஺ை஽௕ߝ) )ଶۑۑے

ېۑ
 

(2.16) 
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Matrix ࡾ is the error covariance matrix of the differences between the model and 
observed values.  The model component, ࡾ௠, can be derived as: 

௠ࡾ  = ൥ ଶ(௜௠ߝ) (௝௠ߝ)(௜௠ߝ)ଶݎ(௝௠ߝ)(௜௠ߝ)ଶݎ ൫ߝ௝௠൯ଶ ൩ (2.17) 

where the diagonal terms describe the FFM error in the given channel and the off-
diagonal terms the co-variance in that error.  The observational component of this error is 
defined as the ‘noise’ in the observations or noise-equivalent delta brightness 
temperature (NEdT) in the thermal channels.  This is assumed to be diagonal: 

௢ࡾ  = ቈ(ߝ௜௢)ଶ 0.00.0 ൫ߝ௝௢൯ଶ቉ (2.18) 

 ௠ are combined to define the R matrix.  We assume that r2 is equal to zero forࡾ ௢ andࡾ
the model error and therefore the off-diagonal terms of this matrix remain as zero. 

ࡾ  = ௠ࡾ + ௢ࡾ = ൥(ߝ௜௠)ଶ + ଶ(௜௢ߝ) (௝௠ߝ)(௜௠ߝ)ଶݎ(௝௠ߝ)(௜௠ߝ)ଶݎ ൫ߝ௝௢൯ଶ + ൫ߝ௝௠൯ଶ൩  
(2.19) 

For both clear and cloud classes the textural component is the local standard deviation of 
the 10.8 μm channel in the nine surrounding pixels (equation 2.3).  All textural 
probabilities are stored in PDF LUTs. 

2.1.3.3 Algorithm Output 

The cloud detection algorithm outputs a probability of clear-sky for each pixel processed.   
SST retrieval is also done for each pixel so that the user on an application specific basis 
can determine the stringency of the cloud screening. Within the CCI project only pixels 
with a clear-sky probability greater than 0.9 are used for SST retrieval.   

2.1.4 Assumptions and Limitations 

This section describes the current performance of the Bayesian cloud detection, 
considers assumptions and limitations and future enhancements to the algorithm 

2.1.4.1 Current Performance 

Over the ocean the Bayesian cloud detection performs better than the threshold based 
operational cloud mask. This is evidenced in the reduction of the standard deviation of the 
AATSR satellite minus in-situ SST differences between July 2002 and December 2007 
when using the Bayesian cloud detection compared to SADIST [RD.184]. 

There are known regions and particular cloud types where cloud detection is more 
difficult.  The easiest cloud to detect is that which is ‘bright’ and ‘white’ providing a distinct 
signal at both visible and infrared wavelengths that differs from that of the dark underlying 
ocean surface.  Low-level fog is often dark making it difficult to distinguish at visible 
wavelengths and has a temperature close to the SST.  Thin or semi-transparent ice cirrus 
often has a sub-pixel extent and is also difficult to detect.   

At high latitudes cloud detection is also more difficult in regions of sea-ice.  Newly formed 
sea-ice is close in temperature to the neighbouring open-water pixel and the surface is 
dark.  Over the sea-ice surface, melt ponds can also make it difficult to identify whether 
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the surface is water or ice. Sea-ice pixels mistakenly classified as open water, will bias 
the SST retrieval. 

2.1.4.2 Assumptions Made 

Within the Bayesian cloud detection independence is assumed between the infrared and 
visible channel probabilities of clear and cloud observations.  In the context of the 
reduced state vector, TOA reflectance is assumed independent of prior SST.  This 
assumption is made to simplify the forward modelling.  Spectral and textural probabilities 
are also assumed to be independent allowing the extraction of two pieces of information 
from the observations.   

In the ࡾ௠ matrix an ࢘ଶ value of zero is assumed in the off-diagonal term giving no 
covariance between channels.  In reality there will be a strong error covariance between 
the 10.8 and 12 μm channels (and the 3.7 μm channel at night).  Further research is 
needed to correctly determine the off-diagonal terms of this matrix. 

In the cloud detection scheme the assumption is made that the pixel will either be ‘clear 
over ocean’ or ‘cloud’.  Sea-ice pixels are unlikely to be well represented in the cloudy 
PDFs and therefore are more likely to be misclassified. 

2.1.5 Future Enhancements 

Using a three-way image classifier could enhance cloud detection at high latitudes.  Each 
pixel would be classified as ‘clear-over-water’, ‘clear-over-ice’ or cloud.  The sea-ice 
surface could be modelled using the FFMs to help distinguish between open-water and 
ice pixels.  Work was undertaken as part of SST CCI in parallel with the high latitude 
extension developed for the AVHRR instruments [RD.308].  This showed particular 
benefits for AATSR where visible channel information were always available during the 
day, but more development is required for a consistent application across all ATSR 
instruments so as not to introduce a bias in the retrieved SSTs.  

2.2 Clear-sky Detection for Advanced Very High Resolution 
Radiometers – All Latitudes 

The clear-sky detection for the Advanced Very High Resolution Radiometer (AVHRR) 
Global Area Coverage (GAC) products uses the operational extended Clouds from 
AVHRR (CLAVR-x) cloud detection algorithm [RD.310, RD.311]. A general overview of 
the cloud detection algorithm is provided in this document and for further information the 
reader is referred to section 2.2.1.  This cloud detection algorithm is applied globally to 
AVHRR data.  An additional classification is applied to high latitude regions described in 
section 2.3. 

2.2.1 Algorithm Overview – CLAVR-x 

The CLAVR-x algorithm is a Bayesian classification based on the product of six 
classifiers. It has been described as a "naive" Bayesian implementation, which refers to 
various simplifying assumptions that are made such as statistical independence for each 
classifying element of the Bayesian calculation. (In contrast, the ATSR method described 
in §2.1 does a multi-element calculation for all the thermal channels, for example).  It 
calculates a probability of cloud, (PoCloud), which is then, sub-divided using thresholds 
into the four categories provided in the cloud mask.    

PoCloud < 0.1 = clear 

PoCloud < 0.5 = probably clear 
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PoCloud > 0.5 = probably cloudy 

PoCloud > 0.9 = cloudy 

Figure 2.7 describes how the CLAVR-X cloud masking fits into the SST retrieval process 
for AVHRR instruments. 

 

Figure 2.7. Flow chart for CLAVR-x cloud masking process. 

2.2.2 Outline of Processing in CLAVR-x 

The probability of clear-sky is defined using the following equation: 

(ܨ|ܿ)ܲ  = ܲ(ܿ)∏ (ܨ)ே௜ୀଵܲ(ܿ|௜ܨ)ܲ  
(2.20) 

where: ܲ(ܿ|ܨ)   is the probability of clear-sky ܲ(ܿ)  is the prior probability of clear ܨ௜  refers to each of the six classifiers 

For each classifier the function ܲ(ܨ) in the denominator is defined as: 

(ܨ)ܲ  = ܲ(ܿ)ሡܲ(ܨ௜|ܿ) +ே
௜ୀଵ ܲ(ܿ̅) ෑܲ(ܨ௜|ܿ̅)ே

௜ୀଵ  
(2.21) 

This document is to be used with the ESA SST_cci Version 1 (v1) products.



  
CCI Phase 1 (SST) SST_CCI-ATBDV2-UOE-001 
SST CCI Algorithm Theoretical Basis Document v2 Issue 1 

  Page 25 

where: ܿ   denotes clear sky ܿ̅   denotes cloud 

The six cloud mask classifiers used in the naïve Bayesian approach to calculate the 
probability of clear-sky and are individually described in Table 2.5. 

 

Table 2.5. CLAVR-x cloud mask classifiers used in the naïve Bayesian calculation. 

Cloud Mask 
Classifier 

Description 

Emissivity 
referenced to the 

tropopause 
(ETROP) 

This classifier is based on the 11 μm channel emissivity calculated 
assuming that the cloud was located at the tropopause.  This is based 
on the principle that clouds will be colder at 11 μm than clear-sky and 
the calculated emissivity assuming a blackbody at the cloud 
temperature will be lower than the equivalent blackbody emissivity 
assuming clear-sky. 

Relative thermal 
contrast (Tmax –T) 

This is based on the difference in the 11 μm brightness temperature 
between the given pixel and the warmest pixel in the surrounding 5x5 
pixel block.  This classifier is designed to detect cloud edges and small-
scale cloud features. 

Four-minus-five 
(FMFT) 

This is based on the 11-12 μm brightness temperature difference, 
which increases where semi-transparent cloud is present.  This is 
compared to the estimated clear-sky equivalent for the given 11 μm 
brightness temperature. 

Daytime 4-μm 
pseudoemissivity 

(day 4-μm) 

This test is based on the calculation of a pseudoemissivity for the 3.75 
μm channel in comparison with the emissivity calculated from the 11 
μm observation.  Where cloud is present the calculated 
pseudoemissivity value increases significantly.  During the day the 4 
μm pseudoemissivity is scaled according to solar zenith angle.  This 
test is only used during the day. 

Nighttime 4-μm 
pseudoemissivity 

(night 4-μm) 

A similar 4 μm test is used at night without the solar zenith angle 
scaling.  Opaque clouds will give pseudoemissivity values significantly 
below unity, whilst cold or semi-transparent clouds will give very large 
values.  This test is only used at night. 

Reflectance at 0.63 
μm (ref 0.63 μm) 

This classifier is based on the difference between the observed 0.6 μm 
reflectance and the expected clear-sky reflectance.  It is based on the 
assumption that clouds are often brighter than the underlying ocean 
surface.  This is only used during the day and not over regions of 
sunglint. 

 

2.2.3 Inputs to CLAVR-x 

The CLAVR-x cloud detection algorithm uses both satellite observations and auxiliary 
data as inputs described in the sections below. 

 

2.2.3.1 Sensor Data - Brightness Temperature, Reflectance 

The AVHRR instruments make observations at visible and infrared wavelengths and a 
subset of the available channels are used in the cloud detection algorithm depending on 
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time of day.  The wavelength bands and channel numbers for the AVHRR channels are 
provided below [RD.312].  

Table 2.6. AVHRR Channel Wave Bands 

Channel number Wave Band (μm) 
1 0.58 – 0.68 

2 0.725 – 1.0 

3A 1.58 – 1.64 

3B 3.55 – 3.93 

4 10.3 – 11.3 

5 11.5 – 12.5 
 

2.2.3.2 Auxiliary Data and Look-Up Tables 

Auxiliary data is used in the CLAVR-x algorithm to determine which tests should be 
applied to a given scene.  Only the auxiliary data relevant to cloud detection over ocean is 
described here.  A full list of the auxiliary data used in the algorithm can be found in 
RD.311.   

CLAVR-x uses a map of surface type to identify oceanic pixels.  These can be classified 
either as deep-ocean or shallow-water and the surface map is constructed from the 
MODIS land cover data.  Simulations of clear-sky conditions are made for the emissivity 
and reflectance comparison tests, which make use of external surface reflectance maps.  
Further details on these simulations are provided in RD.311. 

2.2.4 Further Information on CLAVR-x 

Further information with regard to the training dataset used to construct the six Bayesian 
classifiers can be found in RD.311.  The reader is referred to this document for a more in 
depth description of each classifier and assessment of the algorithm performance. 

2.3 Clear-sky Detection for Advanced Very High Resolution 
Radiometers – High Latitudes Extension 

This subsection gives details of the SST-CCI cloud-clearing algorithm extension at high 
latitudes for AVHRR instruments.   The cloud clearing step prior to SST calculation is 
based on the CLAVR-X method (section 2.2), which is a naive Bayesian cloud probability 
calculation. After the cloud clearing step an additional Bayesian ice and cloud masking 
step is applied under conditions where sea ice might be expected. For both these steps 
the user can apply an application specific threshold on the cloud and ice screening 
stringency.  

At high latitudes it can be difficult to distinguish between open water that often contains 
strong thermal gradients and sea ice, especially where the surface temperature is close to 
the point of phase change between open water and ice.  The additional clear-over-ice 
class improves the skill of the algorithm to identify open ocean cases required for SST 
retrieval purposes.  It also enables identification of sea-ice surfaces for potential ice 
surface temperature retrieval. 
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2.3.1 Algorithm Description 

2.3.1.1 Algorithm Overview 

This chapter describes the AVHRR cloud and ice mask algorithm to be applied in the 
SST-CCI SST retrieval following the SST calculation. It describes an algorithm that 
classifies each AVHRR GAC swath pixel as clear-open-water, ice covered or cloudy. 
These three classes are represented using PDFs. These PDFs are used in a naive 
Bayesian approach to calculate the probability of these three classes, for each pixel. 

2.3.1.2 Processing Outline 

The cloud and ice masking for the AVHRR retrieval is split in two stages. CLAVR-x 
described in section 2.2, and the high-latitude extension described here. The high latitude 
step can be run either directly after the CLAVR-x step, or at a later stage, and is run on all 
pixels which have been classified as clear-open-water by the CLAVR-x step. A flow chart 
for the high latitude extensions is shown below (Figure 2.8). 
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Figure 2.8. Flow chart for high latitude ice and cloud masking. 

2.3.1.3 High Latitude cloud and ice masking step 

The High Latitude cloud and ice masking shown in the flow chart in Figure 2.8 has been 
developed in the SST-CCI project. It is described in full detail here. 

The High Latitude step is run on all pixels classified as clear-open-water by CLAVR-x. 
The pixel is checked against a monthly maximum sea ice extent climatology, which is 
described in section 2.3.2.2. If the pixel is outside the area of maximum sea ice extent for 
the relevant month, no further tests are performed on that pixel and the estimated SST 
value is kept. 
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For those pixels that fall within the maximum sea ice extent,  the time of day is checked 
and a daytime, twilight or nighttime ice and cloud probability calculation test is run.  The 
outputs from these tests are the same; the probability of pixel being clear-open-water, 
cloud covered and ice covered (ܲ݋Clear, ܲ݋Cloud,  Ice). These probabilities are calculated݋ܲ
using a naive Bayesian approach, as described in more detail in RD.274 (section 2.3.2). 

Finally, if ܲ݋Clear is larger than 0.9, the pixel is regarded as clear of cloud and ice, and the 
SST estimate is kept. If not, it is regarded as cloud covered or ice covered. If ܲ݋Ice is 
larger than 0.5 the pixel is classified as ice, otherwise it is classified as cloud. 

2.3.2 Inputs to AVHRR High Latitude Extension 

2.3.2.1 Primary Sensor Data 

The satellite data used are AVHRR-GAC data from the satellites NOAA-12, 14, 15, 16, 
17, 18, 19 and METOP-2, and include satellite and sun geometry data. The channel 
combinations used are as follows: 0.9݁ݎ ⁄0.6݁ݎ  ratio between the reflectance in the 0.9 µm and 0.6 µm channels (AVHRR 

channel 2 and AVHRR channel 1) 1.6݁ݎ ⁄0.6݁ݎ  ratio between the reflectance in the 1.6 µm and 0.6 µm channels 
(AVHRR channel 3A and AVHRR channel 1). [Not available for NOAA 12 
and 12]. ܾ3.7ݐ −  ,difference in brightness temperature of the 3.7 µm and 11 µm channels 11ݐܾ
(AVHRR channel 3/3B and channel 4) ܾ3.7ݐ −  ,difference in brightness temperature of the 3.7 µm and 12 µm channels 12ݐܾ
(AVHRR channel 3/3B and channel 5) 3.7ݐܾ)ܦܵܮ −  local standard deviation in the difference between the 3.7 µm and (12ݐܾ

11 µm channels. 

The LSD operator is described in section 2.3.3.1. 

In addition the following satellite geometry data are used: 

• SOZ – solar zenith angle. 

2.3.2.2 Ancillary Data 

The cloud and ice masking algorithm takes as input monthly maximum sea ice extent 
climatology. This climatology is based on an ocean mask from the National Snow and Ice 
Data Centre (NSIDC), available here: 

http://nsidc.org/data/smmr_ssmi_ancillary/ocean_masks.html. 

This climatology has been produced by NSIDC using the Scanning Multichannel 
Microwave Radiometer (SMMR) and the Special Sensor Microwave/Imager (SSM/I) 
monthly averaged ice concentrations and finding the maximum extent for each month 
between 1979 and 2007. A zone of 350 km has been added to the maximum extent 
NSIDC maps to insure that the masks extend beyond the areas where sea ice is ever 
likely to occur. This climatology is provided at 12.5 km resolution, on a Lambert Azimuthal 
projection in NetCDF3 format. Examples are shown in Figure 2.9.	
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Figure 2.9. Climatological maximum sea ice extent during March (left) and 
September (right). Lakes without climatology are marked in red. 

2.3.2.3 Forward Models 

Forward modeling is not used for the AVHRR high latitude cloud and ice mask extension. 

2.3.3 Mathematical Description of AVHRR High Latitude Extension 

This section describes the theoretical parts of the algorithm in more details. 

2.3.3.1 Physical principals and equations 

This section describes the physical and mathematical symbols and formulas used in the 
description of the algorithm. 

Following is a summary of the symbols used to define the algorithm. ࢕ࡼClear 
The probability of a pixel being clear-open-water. ࢕ࡼCloud 
The probability of a pixel being cloud covered. ࢕ࡼIce 
The probability of a pixel being covered by ice. 

 

 (࢞)ࡰࡿࡸ 
Local standard deviation, defined as the standard deviation of the variable ݔ in a 3x3 pixel 
matrix around the data point in question, including the data point itself. In the case where 
the data point is on a swath line edge, LSD is defined as the standard deviation of the 
remaining closest neighbor points around the data point. 
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,(࢞)WTP࢚࢙࢏ࢊ ,࢞)WTP࢚࢙࢏ࢊ  (࢟
Distance between observation ݔ in a certain channel feature (channel value or channel 
combination) and a water tiepoint (ܹܶܲ) of this channel feature.  The water tiepoint is the 
mean value for this feature over clear-open-water.  The mean value is found by selecting 
all pixels in the training data set that are classified as clear-open-water and then finding 
the average of those pixels in the given channel feature. This clear-open-water tiepoint 
might itself depend on another channel feature ࢟ (such as solar zenith angle or ܾ11ݐ ,ࡹ,࢞)࢚࢙࢏ࡰ࢒ࢇ࢓࢘࢕ࡺ .(12ݐܾ−  (ࡿ
Probability distribution value of x in a normal distribution with mean M and standard 
deviation S, defined as 

,ܯ,ݔ)ݐݏ݅ܦ݈ܽ݉ݎ݋ܰ ܵ) = ߨ2√ܵ ∗ ݁൬ି௣௢௪((௫ିெ),ଶ.଴)ଶ∗௣௢௪(ௌ,ଶ.଴) ൰
,ࡹ,࢞)࢚࢙࢏ࡰ࢒ࢇ࢓࢘࢕ࡺࢍ࢕ࡸ   (ࡿ

Probability distribution value of x in a log normal distribution. In this distribution the natural 
logarithm of the variable has a normal distribution with mean M and standard deviation S. 
The probability distribution function is defined as 

,ܯ,ݔ)ݐݏ݅ܦ݈ܽ݉ݎ݋ܰ݃݋ܮ ܵ) = ܥ1 ݁ି଴.ହ௭మ 
where 

ݖ = (log(ݔ) − ଶܵଶ(ܯ  

ܥ = ݔ ∗ ܵ ∗ ,var|class)࢈࢕࢘࢖ ߨ2√  (ܠ
Probability of an observation x from the variable var, given that that surface observed is of 
a given surface class (clear-over-water, sea-ice, or cloud). This probability depends on 
the probability density function chosen for this variable and class. For the high latitude ice 
and cloud algorithm only normal and log-normal distributions are used, and hence this 
probability density function is one of these two functions: ܾ݋ݎ݌ே(var|class, x) = NormalDist൫x,M(var, class), S(var, class)൯ ܾ݋ݎ݌௅ே(var|class, (ݔ = ,ݎܽݒ)ܯ,ݔ൫ݐݏ݅ܦ݈ܽ݉ݎ݋ܰ݃݋ܮ ,(ݏݏ݈ܽܿ ,ݎܽݒ)ܵ  ൯(ݏݏ݈ܽܿ
Bayesian probabilities for Ice, Water and Cloud 

The functions for calculating the Bayesian probabilities of ice, water and cloud depends 
on how many variables are used. The high latitude ice and cloud masking algorithm uses 
two variables, var1 and var2. These two variables are the selected AVHRR channel 
combinations that have been shown to be the best suited for separating ice, water and 
cloud (e.g. ܴܧଵ.଺, ܴܧ଴.଺) [RD.318]. As described in SST-CCI RD.274, the probabilities for 
the three classes given observation ݔ in ݎܽݒଵ and ݕ in ݎܽݒଶ can then be written as follows: 
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,ݔ)Iceܾ݋ݎܲݏ݁ݕܽܤ (ݕ = ,݁ܿ݅|ଵݎܽݒ)ܾ݋ݎ݌ (ݔ ∗ ,݁ܿ݅|ଶݎܽݒ)ܾ݋ݎ݌ ,ݔ)௦௨௠݌(ݕ (ݕ  

,ݔ)Waterܾ݋ݎܲݏ݁ݕܽܤ (ݕ = ,ݎ݁ݐܽݓ|ଵݎܽݒ)ܾ݋ݎ݌ (ݔ ∗ ,ݎ݁ݐܽݓ|ଶݎܽݒ)ܾ݋ݎ݌ ,ݔ)௦௨௠݌(ݕ (ݕ  

,ݔ)Cloudܾ݋ݎܲݏ݁ݕܽܤ (ݕ = ,݀ݑ݋݈ܿ|ଵݎܽݒ)ܾ݋ݎ݌ (ݔ ∗ ,݀ݑ݋݈ܿ|ଶݎܽݒ)ܾ݋ݎ݌ ,ݔ)௦௨௠݌(ݕ (ݕ  

where ݌sum(ݔ, (ݕ = ,݁ܿ݅|ଵݎܽݒ)ܾ݋ݎ݌ (ݔ ∗ ,݁ܿ݅|ଶݎܽݒ)ܾ݋ݎ݌ (ݕ + ,ݎ݁ݐܽݓ|ଵݎܽݒ)ܾ݋ݎ݌ ∗(ݔ ,ݎ݁ݐܽݓ|ଶݎܽݒ)ܾ݋ݎ݌ (ݕ + ,݀ݑ݋݈ܿ|ଵݎܽݒ)ܾ݋ݎ݌ (ݔ ∗ ,݀ݑ݋݈ܿ|ଶݎܽݒ)ܾ݋ݎ݌  (ݕ
2.3.3.2 Calculations 

This section describes the algorithm calculations in detail. 

The high latitude ice and cloud masking extension has three main stages, as described in 
section 2.3.1.3. The first test (maximum ice climatology check) and the last stage 
(probability check) are clearly described in section 2.3.1.3, and no further details are 
provided here. The second test (calculation of probabilities) is more complex and further 
details are provided here. 

The calculation of probabilities for each pixel being covered by ice, cloud or clear-open-
water is split into three functions; one for daytime, one for twilight and one for night time 
conditions. Which function to use is decided by checking the pixel's solar zenith angle 
(SOZ), 

Daytime: 0° <= SOZ <= 70° 

Low sun: 70° < SOZ < 90° 

Night time: SOZ >= 90° 

Daytime probability calculation 

The daytime probability calculation uses the naive Bayesian classifier (described in SST-
CCI RD.274) with two channel combinations as input. The first channel combination is ܴ0.9ܧ ⁄0.6ܧܴ . The second depends on which channels are available on the AVHRR 
instrument. If channel 3A (ܴ1.6ܧ) is available, the channel combination ܴ1.6ܧ ⁄0.6ܧܴ  is used. 
If ܴ1.6ܧ is not available, the channel combination ܤ 3ܶ.7 − ܤ 1ܶ1 is used. 

The probability of ice, water and cloud is calculated using the functions described in 
section 0, with these two options of input channels: 

Iceܾ݋ݎܲݏ݁ݕܽܤ ൬ܴܧ଴.ଽܴܧ଴.଺ , Waterܾ݋ݎܲݏ݁ݕܽܤ ଴.଺൰ܧଵ.଺ܴܧܴ ൬ܴܧ଴.ଽܴܧ଴.଺ ,  ଴.଺൰ܧଵ.଺ܴܧܴ
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Cloudܾ݋ݎܲݏ݁ݕܽܤ ൬ܴܧ଴.ଽܴܧ଴.଺ ,  ଴.଺൰ܧଵ.଺ܴܧܴ
or 

݋ݎܲݏ݁ݕܽܤ Iܾce ൬ܴܧ଴.ଽܴܧ଴.଺ , ܤ 3ܶ.7 − ܤ 1ܶ1൰ 
Waterܾ݋ݎܲݏ݁ݕܽܤ ൬ܴܧ଴.ଽܴܧ଴.଺ , ܤ 3ܶ.7 − ܤ 1ܶ1൰ 
Cloudܾ݋ݎܲݏ݁ݕܽܤ ൬ܴܧ଴.ଽܴܧ଴.଺ , ܤ 3ܶ.7 − ܤ 1ܶ1൰ 

These Bayesian probability functions depend on the probability density functions for each 
variable and class. The coefficients for these PDFs are provided in section 2.3.3.3. In 
these Bayesian functions the normal distribution is used for all the variables and classes. 
The PDF coefficients are constant for ܴܧ଴.ଽ/ܴܧ଴.଺ and ܴܧଵ.଺/ܴܧ଴.଺, and vary linearly as a 
function of solar zenith angle for ܤ 3ܶ.7 − ܤ 1ܶ1. The linear functions for the mean (M) and 
the standard deviation (S) are defined as: 

M = MA * SOZ + MB 

S = SA * SOZ + SB 

All the coefficients are provided in Table 2.7. 

Low sun probability calculation  

For low sun cases (70<SOZ<90), the same Bayesian functions are used as for day. Only 
normal distributions are used. The only difference is that the PDF coefficients all vary 
linearly as a function of solar zenith angle. All coefficients are provided in Table 2.8. 

Night time probability calculation  

For night time cases (SOZ >= 90) the probability of ice, water and cloud depends on a 
different set of channel combinations: ܾ݋ݎܲݏ݁ݕܽܤூ௖௘൫݀݅ݐݏௐ்௉(ܤ ଷܶ.଻ − ,ଵଶܶܤ ܤ ଵܶଵ − ܤ ଵܶଶ), ܤ)ܦܵܮ ଷܶ.଻ − ܤ ଵܶଶ)൯ ܾ݋ݎܲݏ݁ݕܽܤௐ௔௧௘௥൫݀݅ݐݏௐ்௉(ܤ ଷܶ.଻ − ܤ ଵܶଶ, ܤ ଵܶଵ − ܤ ଵܶଶ), ܤ)ܦܵܮ ଷܶ.଻ − ܤ ଵܶଶ)൯  ܾ݋ݎܲݏ݁ݕܽܤ஼௟௢௨ௗ൫݀݅ݐݏௐ்௉(ܤ ଷܶ.଻ − ܤ ଵܶଶ, ܤ ଵܶଵ − ܤ ଵܶଶ), ܤ)ܦܵܮ ଷܶ.଻ − ܤ ଵܶଶ)൯ 
The distance to water tiepoint, ݀݅ݐݏௐ்௉, uses the channel combination BTଷ.଻ − BTଵଶ. The 
water tiepoints in BTଷ.଻ − BTଵଶ depend linearly on BTଵଵ − BTଵଶ	in this way: ݌ݐ௪௔௧௘௥ = ௐ஺஺݌ݐ ∗ ܤ) ଵܶଵ − ܤ ଵܶଶ) +  ௐ஺஻݌ݐ

A normal distribution is used for the ݀݅ݐݏௐ்௉, variable. The local standard deviation, ܦܵܮ, , 
in the channel combination BTଷ.଻ − BTଵଶ uses normal distribution for water and ice, and 
log-normal distribution for clouds. 

All coefficients are provided in Table 2.9. 
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2.3.3.3 Look-Up Table Description 

This section describes the look-up tables used by the algorithm. 
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Daytime PDFs 

Table 2.7. Coefficients for daytime cloud, water and ice PDFs, mean (M) and standard deviation (S) values. Coefficients A and B are for the 
linear function which depends on solar zenith angle. 

 

Feature Satellite MA Cloud MB Cloud SA Cloud SB Cloud MA Water MB Water SA Water SB Water MA Ice MB Ice SA Ice SB Ice

re09/re06 avhrr.12 0.00000 0.85281 0.00000 0.04682 0.00000 0.38893 0.00000 0.07425 0.00000 0.69591 0.00000 0.08343
re09/re06 avhrr.14 0.00000 0.96286 0.00000 0.05668 0.00000 0.46845 0.00000 0.07664 0.00000 0.83564 0.00000 0.10712
re09/re06 avhrr.15 0.00000 0.85934 0.00000 0.04591 0.00000 0.45613 0.00000 0.09711 0.00000 0.71348 0.00000 0.08896
re09/re06 avhrr.16 0.00000 1.00201 0.00000 0.08391 0.00000 0.49379 0.00000 0.05268 0.00000 0.78652 0.00000 0.09502
re09/re06 avhrr.17 0.00000 0.97274 0.00000 0.07145 0.00000 0.49986 0.00000 0.05124 0.00000 0.81967 0.00000 0.10337
re09/re06 avhrr.18 0.00000 0.97274 0.00000 0.07145 0.00000 0.49986 0.00000 0.05124 0.00000 0.81967 0.00000 0.10337
re09/re06 avhrr.19 0.00000 0.97274 0.00000 0.07145 0.00000 0.49986 0.00000 0.05124 0.00000 0.81967 0.00000 0.10337
re09/re06 avhrr.M2 0.00000 0.97274 0.00000 0.07145 0.00000 0.49986 0.00000 0.05124 0.00000 0.81967 0.00000 0.10337
re16/re06 avhrr.17 0.00000 0.72693 0.00000 0.23643 0.00000 0.11614 0.00000 0.06288 0.00000 0.09602 0.00000 0.05110
re16/re06 avhrr.M2 0.00000 0.72313 0.00000 0.23673 0.00000 0.10658 0.00000 0.06581 0.00000 0.08964 0.00000 0.05165
bt37-bt11 avhrr.12 -0.56348 69.35526 0.00000 13.63244 -0.00018 -0.22443 0.00000 0.40911 -0.13988 11.35302 0.00000 1.43857
bt37-bt11 avhrr.14 -0.34541 45.87440 -0.04061 12.95126 -0.00363 -0.00948 -0.00371 0.65188 -0.11360 10.27040 -0.05884 5.66529
bt37-bt11 avhrr.15 -0.25533 48.29366 0.00000 14.09327 -0.00130 0.53671 0.00000 0.58704 -0.09010 8.76945 0.00000 1.31814
bt37-bt11 avhrr.16 -0.38364 60.66684 0.00000 14.71542 0.00880 -0.19203 0.00000 0.56054 -0.09794 8.63588 0.00000 1.17303
bt37-bt11 avhrr.17 -0.31430 44.17989 -0.02694 12.65744 -0.00702 0.28810 -0.00607 0.80616 -0.05909 5.86810 -0.04862 4.85154
bt37-bt11 avhrr.18 -0.31430 44.17989 -0.02694 12.65744 -0.00702 0.28810 -0.00607 0.80616 -0.05909 5.86810 -0.04862 4.85154
bt37-bt11 avhrr.19 -0.31977 44.41623 -0.04062 13.43065 -0.00199 0.20798 -0.00434 0.68304 -0.02195 3.63142 -0.03212 3.76327
bt37-bt11 avhrr.M2 -0.31977 44.41623 -0.04062 13.43065 -0.00199 0.20798 -0.00434 0.68304 -0.02195 3.63142 -0.03212 3.763
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Low sun PDFs 

Table 2.8. Coefficients for low sun cloud, water and ice PDFs, mean (M) and standard deviation (S) values. Coefficients A and B are for the 
linear function which depends on solar zenith angle. 

  

 
 
 
 
 

Feature Satellite MA Cloud MB Cloud SA Cloud SB Cloud MA Water MB Water SA Water SB Water MA Ice MB Ice SA Ice SB Ice
re09/re06 avhrr.12 0.00583 0.45108 0.00453 -0.26367 0.00156 0.26167 0.00081 0.00522 0.00085 0.61656 0.00001 0.08067
re09/re06 avhrr.14 0.00249 0.81170 0.00322 -0.16418 0.00680 -0.02092 -0.00151 0.16632 -0.00176 0.96871 -0.00175 0.23960
re09/re06 avhrr.15 0.00742 0.37190 0.00461 -0.26915 -0.00460 0.78057 -0.00037 0.10901 -0.00215 0.93308 -0.00008 0.09755
re09/re06 avhrr.16 0.00352 0.79392 0.00212 -0.06511 0.00366 0.24588 -0.00193 0.18403 0.00316 0.55905 0.00220 -0.06487
re09/re06 avhrr.17 0.00432 0.69152 0.00261 -0.10628 0.00228 0.36877 -0.00128 0.12892 0.00025 0.78506 -0.00024 0.12318
re09/re06 avhrr.18 0.00554 0.61246 0.00259 -0.10782 0.00422 0.20235 -0.00123 0.13233 -0.00114 0.89733 0.00017 0.10009
re09/re06 avhrr.19 0.00641 0.53107 0.00241 -0.09328 0.00460 0.18173 -0.00189 0.17628 -0.00240 1.04805 0.00151 -0.01988
re09/re06 avhrr.M2 0.00441 0.68548 0.00265 -0.10751 0.00372 0.25285 -0.00213 0.19982 0.00117 0.71995 -0.00034 0.13009
re16/re06 avhrr.17 -0.00035 0.74791 0.00001 0.22789 0.00005 0.11209 -0.00111 0.13291 -0.00013 0.11627 -0.00014 0.05621
re16/re06 avhrr.M2 -0.00097 0.77669 -0.00056 0.27837 0.00121 0.02402 -0.00116 0.13967 0.00013 0.09111 -0.00020 0.06397
bt37-bt11 avhrr.12 -1.00387 100.18210 -0.15530 24.50319 0.00534 -0.61087 0.00872 -0.20153 -0.06709 6.25776 -0.00693 1.92355
bt37-bt11 avhrr.14 -0.81486 78.73564 -0.14252 20.08538 0.01219 -1.11710 0.00240 0.22361 -0.09941 9.27680 -0.02231 3.10805
bt37-bt11 avhrr.15 -1.00285 100.62026 -0.17166 26.10963 -0.02880 2.46204 -0.01085 1.34667 -0.11211 10.30992 -0.01966 2.69413
bt37-bt11 avhrr.16 -1.46363 136.26590 -0.32002 37.11670 -0.02121 1.90920 -0.01203 1.40245 -0.07151 6.78563 -0.01865 2.47865
bt37-bt11 avhrr.17 -0.86394 82.65454 -0.25658 28.73197 -0.01483 0.83486 -0.00069 0.42907 -0.09409 8.31815 -0.04490 4.59092
bt37-bt11 avhrr.18 -0.86394 82.65454 -0.25658 28.73197 -0.01483 0.83486 -0.00069 0.42907 -0.09409 8.31815 -0.04490 4.59092
bt37-bt11 avhrr.19 -0.83436 80.43717 -0.20255 24.76542 -0.02043 1.49843 -0.00797 0.93716 -0.10423 9.39069 -0.04826 4.89320
bt37-bt11 avhrr.M2 -0.83436 80.43717 -0.20255 24.76542 -0.02043 1.49843 -0.00797 0.93716 -0.10423 9.39069 -0.04826 4.89320
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Night time PDFs 

Table 2.9. Coefficients for night time cloud, water and ice PDFs, mean (M) and standard deviation (S) values. The water tiepoint coefficients are 
given in TA Water and TB Water. Empty cells mean that the coefficients are not used. Normal distribution mean and standard deviation 
coefficients are provided under LSD(bt37-bt12) and log-normal under ln(LSD(bt37-bt12)). 

 
Satellite M Cloud S Cloud M Water S Water M Ice S Ice TA Water TB Water

avhrr.12 0.000 2.078 0.000 0.323 0.000 0.968 0.874 0.076

avhrr.14 0.000 2.187 0.000 0.295 0.000 0.884 1.067 -0.040

avhrr.15 0.000 2.094 0.000 0.258 0.000 0.774 0.906 0.037

avhrr.16 0.000 2.061 0.000 0.261 0.000 0.783 0.835 -0.018

avhrr.17 0.300 2.066 0.000 0.183 0.000 0.548 0.703 -0.152

avhrr.18 0.100 2.009 0.000 0.164 0.000 0.492 0.904 -0.433

avhrr.19 0.500 2.103 0.000 0.153 0.000 0.460 0.996 -0.397

avhrr.M2 0.100 2.057 0.000 0.144 0.000 0.433 0.767 -0.307

avhrr.12 0.310 0.118 0.920 0.236
avhrr.14 0.190 0.074 0.539 0.148
avhrr.15 0.130 0.054 0.385 0.108
avhrr.16 0.140 0.054 0.375 0.109
avhrr.17 0.130 0.056 0.357 0.113
avhrr.18 0.100 0.056 0.336 0.113
avhrr.19 0.100 0.055 0.316 0.111
avhrr.M2 0.100 0.058 0.340 0.116
avhrr.12 -0.392 0.425
avhrr.14 -0.622 0.588
avhrr.15 -0.711 0.688
avhrr.16 -0.721 0.690
avhrr.17 -0.767 0.716
avhrr.18 -0.795 0.752
avhrr.19 -0.817 0.773
avhrr.M2 -0.817 0.751
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2.3.3.4 Algorithm Output 

The output of the AVHRR cloud and ice mask algorithm is the probability of each pixel 
being clear-open-water, ice covered and cloud covered. Each of these numbers is non-
dimensional, is between 0.0 and 1.0 and together they sum up to 1.0. The three numbers 
are used to mark the respective pixels as clear-open-water, cloud covered or ice covered. 

2.3.4 Assumptions and Limitations 

2.3.4.1 Algorithm Performance 

During the development and tuning of the high latitude ice and cloud masking algorithm, 
some assumptions that might influence the algorithm have been made. These 
assumptions are listed in this section. 

For the PDFs that have been developed, it has been assumed that they are Gaussian 
normal distributions. This is a simplification that holds for a large part of the range of 
observations for the chosen channel combinations, but not for all. Under very low sun 
conditions or at very high satellite zenith angles the observed distributions might deviate 
from Gaussian distributions. Still, in most cases the Gaussian distribution holds and this 
assumption is a good one. 

In some cases, the defined PDFs have shorter overlaps between the classes in one 
variable than is observed. This sometimes happens in the range of observations where it 
is very difficult to separate the classes with the variable in question. This might lead to a 
more certain classification than it should. 

It is assumed that the PDFs do not change with satellite zenith angle. The PDFs have 
been developed using data covering all satellite zenith angles. This will have a small 
impact on textural features such as local standard deviation (LSD), which is smoother at 
higher satellite zenith angles. 

For this algorithm it is assumed that there is no difference in prior probability between ice, 
water and cloud. 

Under twilight conditions, the ability to separate the different classes decreases with 
increasing solar zenith angle, mainly for solar zenith angles between 80° and 90°. So the 
algorithm performance is worse with increasing solar zenith angle during twilight. 

Under night time conditions it is very difficult to discriminate between clouds and ice, due 
to the spectral characteristics of ice and clouds being very similar in the three available 
AVHRR channels. Therefore the night time algorithm cannot be expected to perform well 
in separating clouds and ice, but should work reasonably well in separating clear-open-
water from clouds or ice. 

2.3.4.2 Sensor Performance 

Some assumptions have been made concerning the sensor performance during the 
algorithm development. The assumptions are listed in this section. 

It is assumed that the radiometric data are consistently calibrated over time. It is also 
assumed that the radiometric data do not degrade over time and that the radiometric 
noise is constant. This is necessary for using PDFs that do not vary with time. The check 
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on the calibration of the radiometric data must be handled elsewhere in the processing 
chain. 

2.3.5 Future Enhancements 

One possible enhancement is to introduce different prior probabilities to the three classes: 
ice, water and cloud. The ice and water prior probabilities could for example depend on a 
sea ice concentration product. 
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3. RETRIEVAL OF SKIN SEA SURFACE TEMPERATURE FROM 
THERMAL INFRARED SENSORS 

3.1 Optimal Estimator for AATSR and ATSR-2 

3.1.1 General formulation for reduced-state vector optimal estimation for 
SST 

Optimal estimation (OE) was first discussed in reference to SST retrieval in Merchant et 
al., 2008 [RD.221]; this is the method that has been used to retrieve the SST from ATSR-
2 and AATSR data. In the OE methodology described, a priori expectations, ࢞௔, about the 
state of the atmosphere and ocean are used as inputs to a forward model, ࡲ, to simulate 
prior observations, ࢟௔, which represent the expected brightness temperatures (BT), i.e. ࢟௔ =  ௔ are from numerical weather prediction (NWP) data࢞ The state variables .(௔࢞)ࡲ
and the forward model 	ࡲ is the radiative transfer model RTTOV10.2. The sea surface 
emissivity is taken from the ATSR Reprocessing for Climate (ARC) emissivity model and 
a reflectivity correction based on the method of Watts et al. [RD.297] has been applied. 
The sensitivity of the simulated BTs to variations in the state variables, K, is defined using 
the tangent linears to the forward model. These sensitivities are combined with the 
difference between the observed and simulated BTs (࢟௢ −  to optimally modify the ,((௔࢞)ࡲ
prior estimate of the state, which includes the SST. The retrieved state variables, ࢞ෝ, are 
estimated using: ࢞ෝ = ௔࢞ +G൫࢟௢ − F(࢞௔)൯ = ௔࢞ + ఌିࡿ்ࡷ) ଵࡷ + ఌିࡿ்ࡷ௔ିଵ)ିଵࡿ ଵ(࢟௢ + F(࢞௔)) (3.1) 

G is the gain matrix that operates on the observed minus simulated BT difference (this is 
described in detail in RD.307).  .ࡿఌ is the error covariance of the model and satellite 
observations of the BTs. These are a combination of the radiometric noise in the 
observations and estimated uncertainty of the forward model. It is assumed that the 
radiometric noise and the forward model errors are uncorrelated between channels. The 
impact of this assumption is discussed in RD.221.  ࡿ௔ is the error covariance matrix for 
the prior state variables. Using 3.1, the retrieved state is optimal in the sense that it will 
give an unbiased, minimum standard deviation estimate of the state if (i) the prior 
information are unbiased and (ii) the forward model is unbiased [RD.221]. 

It was shown in RD.221 that a reduced state vector based on the leading modes of 
variability can be used in the optimal estimation of the state. The SST and TCWV 
variability are associated with the first two dominant modes of variability in the BTs, so 

these two state variables are used to define the reduced state vector (	(࢞)ࢠ = ቂݓݔቃ), where 

x represents the SST and w represents the TCWV. It should be noted that the full state 
vector  xa is still used to calculate the simulated BTs. Use of the reduced state vector in 
the OE reduces the size of the  ࡿ௔ error covariance matrix to 2×2. In this case it can be 
assumed that the errors in the state variables are uncorrelated.  

Merchant et al. [RD.295] demonstrate that the uncertainty in the OE retrieved SST is 
reduced if the prior TCWV error variance is constructed so as to account for the 
limitations in the NWP fields used to define the prior state. The prior TCWV error variance 
used in generating the SST CCI data is detailed in Table 3.1, There is a trade-off between 
the SST error variance (the dispersion of uncertainty in the retrieval) and both the SST 
bias and SST sensitivity. Specifying a large prior SST error variance (larger than the true 
uncertainty of the prior SST) ensures that the retrieved SST is minimally biased by the 
prior SST and has SST sensitivity close to 100% [RD.295]. The set of formulations used 
in the reduced state-vector OE is listed in Table 3.1. 
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Table 3.1. Parameters in the SST CCI optimal estimator for AATSR and ATSR-2 

Aspect of optimal 

estimator 

Assumption/configuration 

Prior SST, ݔ௔  ‘ERA Interim’ skin sea surface temperature 

Error SD in prior, ݁௫௔  5 K 

Prior full state vector,  ࢞௔  ‘ERA Interim’ surface pressure plus atmospheric profiles of temperature and humidity on ECMWF 

model pressure levels 

Prior TCWV, ࢝௔  The vertical integral of the water vapour absolute humidity from the full state vector ࢞௔ 

Error in prior TCWV, ݁௪௔ ݓ(ܽ݁ି௕௪ + ܿ)   [w in kg m-2]  where a = 0.42; b = 0.05; c = 0.042 

Prior error covariance 

matrix, ࡿ௔ 
൬݁௫௔ଶ 00 ݁௪௔ଶ ൰ 

Forward model for 

simulated BTs 

RTTOV10.2 

Forward model error, ࢿோ்  ݁ோ் sec is the satellite zenith angle and ݁ோ் ߠ where ,ߠ = 0.15 K for 3.7 μm; 0.16 for 11 μm; 0.17 for 

12 μm 

Pixel-level BT noise 

equivalent differential 

temperature / K 

Linear interpolation with respect to pixel BT of the NEDTs measured viewing the hot and cold on-

board black bodies, using the following data: 

 ATSR-2 AATSR 

 Cold BB Hot BB Cold BB Hot BB 

BB temp. / K 256.2 299.9 262.0 300.9 

3.7 μm NEDT 0.1064 0.0364 0.0745 0.0310 

11 μm NEDT 0.0586 0.0524 0.0651 0.0695 

12 μm NEDT 0.0651 0.0695 0.0337 0.0316 
 

Prior BT covariance matrix, 

. 1  

ێێۏ
ێێێ
ଷ.଻௡ଶߝۍ + ோ்ଶߝ 0 0 0 0 00 ଵଵ௡ଶߝ + ோ்ଶߝ 0 0 0 00 0 ଵଶ௡ଶߝ + ோ்ଶߝ 0 0 00 0 0 ଷ.଻௙ଶߝ + ோ்ଶߝ 0 00 0 0 0 ଵଵ௙ଶߝ + ோ்ଶߝ 00 0 0 0 0 ଵଶ௙ଶߝ + ۑۑےோ்ଶߝ

ۑۑۑ
ې
 

Tangent linear matrix 2, K ൦߲ݕଷ.଻௡߲ݔ ݔଵଵ௡߲ݕ߲ ݔଵଶ௡߲ݕ߲ ݔଷ.଻௙߲ݕ߲ ݔଵଵ௙߲ݕ߲ ݓଷ.଻௡߲ݕ߲ݔଵଶ௙߲ݕ߲ ݓଵଵ௡߲ݕ߲ ݓଵଶ௡߲ݕ߲ ݓଷ.଻௙߲ݕ߲ ݓଵଵ௙߲ݕ߲ ݓଵଶ௙߲ݕ߲ ൪ 

  1 Here ߝ௑௩ indicates the channel at wavelength ܺ μm in the view ܸ (nadir, n, or forward, f). When using fewer channels, 

the corresponding rows and columns are omitted.  εRT depends on channel wavelength and satellite zenith angle. 

 ௑௩ indicates the channel at wavelength ܺ μm in the view ܸ (nadir, n, or forward, f). The partial derivatives with respect toݕ 2
w require an assumption about how water vapour changes at different altitudes are related. The assumption made is that 
the fractional change in absolute humidity is the same for all altitudes. When a particular channel/view is not included in 
the retrieval, the corresponding column of K is omitted. 

Sε
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The optimal estimator formulated in this way approximates a hybrid maximum a posteriori 
/maximum likelihood (MAP/ML) solution. Since the prior TCWV error variance is chosen 
to be approximately representative of the uncertainty in prior w, the estimator is a MAP 
solution in that respect. Since the prior SST error standard deviation, at 5 K, is an order of 
magnitude greater than the true prior SST uncertainty (of order 0.6 K), the bias towards 
the prior SST is minimised, sensitivity is maximised and the estimator is an approximate 
ML solution with respect to SST. 

3.1.2 Forward model adjustments for bias minimisation 

OE formulated as ML with respect to SST should give an unbiased estimate provided that 
the forward model is unbiased relative to the observations. Since the target is for the 
retrieved SST to be unbiased to within 0.1 K, the forward model needs to be unbiased 
relative to the observations in each channel to within << 0.1 K. Both the channel-
integrating nature of the fast radiative transfer model and the calibration accuracy of the 
AATSR and ATSR-2 BTs mean that an uncertainty of << 0.1 K cannot be assumed for 
every channel on these sensors. Therefore, an adjustment to the forward modelled BTs is 
required before the retrieval of the SSTs using the OE method. 

An unbiased prior SST is required to accurately determine the forward model bias. The 
SST product developed in the ARC project [RD.296] has sufficiently low bias to be 
suitable for correcting for forward model bias. A set of quality controlled observations from 
a Multi-sensor Match-up Database (MMD) are used to construct the forward model bias 
correction. The process is summarised in Figure 3.1. Suitable observations are selected 
from the MMD and SSTs are simulated using the ARC retrieval coefficients applied to the 
observed BTs. These simulated SSTs are then combined with NWP fields and the BTs 
are calculated using the forward model. The bias adjustment is calculated by fitting a 
function to the simulated minus observed (S-O) BTs that depends on parameters 
identified as a source of forward model bias. 
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Figure 3.1. Flow diagram showing the simulation minus observation (S-O) bias 
correction process. ‘ATSR’ here is either AATSR or ATSR-2. The fast radiative 

transfer model (RTM) is RTTOV 10.2. The full RTM is a line-by-line model. 

 

 

 

 

This document is to be used with the ESA SST_cci Version 1 (v1) products.



  
CCI Phase 1 (SST) SST_CCI-ATBDV2-UOE-001 
SST CCI Algorithm Theoretical Basis Document v2 Issue 1 

  Page 44 

For the ATSR sensors, the bias adjustment for the MMD S-O difference is parameterised 
using the formula: ݕ௔adjusted = ௔ݕ − (ܽ + (ܬܾ − ቀܿ + ݓ݀ + ௘௪ୡ୭ୱ(ఏ) + ݂ ln(ݓ) + ݃ dܶiffቁ  (3.2) 

where ܬ is the number of days since 00:00 UTC 1 Jan 2000 (ܬ is negative for earlier dates) ݓ is the prior total column water vapour, kg m-2 ߠ is the satellite view zenith angle 

Tdiff is the prior skin SST minus the minimum (tropopause) temperature in the NWP 
profile 

These predictors are justified by the nature of the likely errors in forward modelling and 
calibration, respectively: ܾܬ   drift in calibration over time ߲ݓ + ௘௪ୡ୭ୱఏ + ݂ ln(ݓ) errors from spectral approximation in radiative transfer and/or 

spectral response uncertainty that have different behaviours with 
respect to the TCWV 

dܶiff errors from spectral approximation in radiative transfer and/or 
spectral response uncertainty depending on the temperature 
contrast across the troposphere 

The coefficients a … g were obtained by ordinary least squares regression against S-O 
values extracted with NWP information from the SST CCI multi-sensor matchup database 
[RD.232]. 

The bias adjustment coefficients are defined for each channel, view and sensor in Table 
3.2. It may be noticed that the term bw is much larger for the AATSR 12 μm channel than 
for other channels. This reflects a systematic error in this channel, suspected to be linked 
to uncertainty in the spectral response function of this channel in flight, which is discussed 
in RD.186. 

Table 3.2. Bias adjustment coefficients applied to RTTOV BT simulations 

 a b c d e F g 
AATSR        

12n 0.05295756 0.00338215 -0.79032085 -0.040807702 0.027067579 0.16586370 0.007654017
611n 0.094677947 -9.3149603E-06 -0.42181691 -0.034205357 0.026009239 0.099363880 0.004157997
73.7n -0.057381770 -4.9043523E-06 -0.27717829 -0.029821493 0.021352979 0.075355428 0.002787283
312f 0.14189303 0.00397353 -0.74354480 0.031034069 -0.028438285 0.20199601 0.007462564
811f 0.10780302 -1.4868328E-05 -0.56740023 0.044941997 -0.033358798 0.19245244 0.004233160
23.7f -0.014928819 -6.1923075E-06 -0.43715274 0.024626578 -0.021525511 0.13907145 0.003601326
1ATSR-2        

12n 0.19487751 3.5315173e-05 -0.90643508 -0.043672887 0.028476719 0.18702661 0.007550045
311n 0.11590252 2.3662987e-05 -0.49421170 -0.044683273 0.034695967 0.10992667 0.004169421
03.7n -0.11389527 5.8083874e-06 -0.33416882 -0.030353188 0.019632113 0.091340954 0.003316309
012f 0.27668353 3.3933909e-05 -0.88119003 0.040174393 -0.035010815 0.22670855 0.007328980
411f 0.13832849 2.4887296e-05 -0.67738481 0.055810016 -0.041553816 0.21919086 0.004178803
33.7f -0.084070699 8.5364835e-06 -0.54631403 0.020146209 -0.021095221 0.16718704 0.004631343
0

 

This document is to be used with the ESA SST_cci Version 1 (v1) products.



  
CCI Phase 1 (SST) SST_CCI-ATBDV2-UOE-001 
SST CCI Algorithm Theoretical Basis Document v2 Issue 1 

  Page 45 

3.1.3 Channel combinations 

The SSTs used in the ATSR L3U products in the CCI [RD.175] are always dual-view 
SSTs, which are least likely to be biased by anomalous atmospheric conditions and 
aerosol loadings. If the solar zenith angle exceeds 92.5° for a given nadir pixel, then the 
dual-view three-channel retrieval is used, and the ࡷ and ࡿఌ matrices are defined as in 
Table 3.1. If the solar zenith angle is less than 87.5 the 3.7 μm channel is not used to 
avoid possible biasing from solar reflection and scattering.  In this case, only the rows and 
columns relevant to the 11n, 11f, 12n and 12f channels are retained in ࡷ and ࡿఌ.  When 
the solar zenith angle is between 87.5° and 92.5° the pixel is considered to be in twilight 
and no SST retrieval is made. 

3.2 Optimal estimator for AVHRRs 

3.2.1 General formulation for reduced-state vector optimal estimation for 
SST 

The principles of the optimal estimator for the AVHRRs are identical to those described in 
section 3.1.1. Essentially, the same retrieval algorithm is applied to the AVHRRs: ࢞ෝ = ࢇ࢞ + G൫࢕࢟ − F(ࢇ࢞)൯ = ࢇ࢞ + ࢿିࡿࢀࡷ) ૚ࡷ + ࢿିࡿࢀࡷ૚)ି૚ିࢇࡿ ૚(࢕࢟ + F(ࢇ࢞)) (3.3) 

The retrieved state ࢞ෝ is the prior state plus an increment of G൫࢕࢟ − F(ࢇ࢞)൯. The matrix K 
expresses how the observations change for departures from the prior state xa, i.e., it is a 
matrix where a given row contains the partial derivatives of the BT in a particular channel 
with respect to each element of the state vector in turn. The partial derivatives are the 
tangent linears output from the forward model F. ࡿఌ is the error covariance of the prior 
and satellite observations of the BTs. These include the radiometric noise in the 
observations and estimated uncertainty of the forward model. ࡿ௔ is the error covariance 
matrix for the prior state variables. 

The OE formulation operates on a reduced state vector (࢞)ࢠ = ቂݓݔቃ, which includes only 

SST (ݔ) and TCWV (ݓ). The formulations used in the reduced state-vector OE for 
AVHRRs are listed in Table 3.3. 
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Table 3.3. Parameters in the SST CCI optimal estimator for AVHRRs 

Aspect of optimal estimator Assumption/configuration 

Prior SST, xa ‘ERA Interim’ skin sea surface temperature 

Error SD in prior, exa 5 K 

Prior full state vector,  xa 
‘ERA Interim’ surface pressure plus atmospheric profiles of temperature 

and humidity on ECMWF model pressure levels 

Prior TCWV, wa 
The vertical integral of the water vapour absolute humidity from the full 

state vector xa 

Error in prior TCWV, ewa 
௕௪ି݁ܽ)ݓ + ܿ)      [w in kg m-2] 

a = 0.42; b = 0.05; c = 0.042 

Prior error covariance matrix, ൬݁௫௔ଶ 00 ݁௪௔ଶ ൰ 

Forward model for simulated 
BTs 

RTTOV10.2 

Forward model error, εRT 
eRT  sec(θ), where θ is the satellite zenith angle and 

eRT  =  0.15 K for 3.7 μm; 0.16 for 11 μm; 0.17 for 12 μm 

Pixel-level BT noise 
equivalent differential 

temperature / K 

0.06 K at 300 K 
Scaled by Planck function at other temperatures (i.e., assumes constant 

radiance error standard deviation). 

Prior BT covariance matrix. 1 ቎ߝଷ.଻ଶ + ோ்ଶߝ 0 00 ଵଵଶߝ + ோ்ଶߝ 00 0 ଵଶଶߝ +  ோ்ଶ቏ߝ
Tangent linear matrix 2, K ൦߲ݕଷ.଻݀ݔ ݔଵଵ݀ݕ߲ ݓଷ.଻݀ݕ߲ݔଵଶ݀ݕ߲ ݓଵଵ݀ݕ߲ ݓଵଶ݀ݕ߲ ൪ 

1 Here ߝ௫ indicates the channel at wavelength ݔ μm. When using fewer channels, the corresponding 

rows and columns are omitted.  εRT depends on channel wavelength and satellite zenith angle. 

 require an ݓ μm. The partial derivatives with respect to ݔ ௫ indicates the channel at wavelengthݕ 2
assumption about how water vapour changes at different altitudes are related. The assumption made 
is that the fractional change in absolute humidity is the same for all altitudes. When a particular 
channel/view is not included in the retrieval, the corresponding column of ܭ is omitted. 

The optimal estimator formulated in this way approximates a hybrid maximum a posteriori 
/ maximum likelihood (MAP/ML) solution. 

3.2.2 Forward model adjustments for bias minimisation 

As with the ATSR-2 and AATSR sensors, a bias correction to the forward model is 
required to ensure that the OE delivers SSTs within the required target bias. SSTs based 
on the ARC retrieval are used as the prior SST for the forward model. The bias 
adjustment for AVHRRs relies on multi-sensor matches in the MMD between AVHRR and 
either ATSR-2 or AATSR so that the ARC based SST can be retrieved for the prior state. 
The ARC SSTs are assumed to be an unbiased reference for skin SST.  The process for 
constructing the forward model bias adjustments is described by Figure 3.2.  

The AVHRR and ATSR observations in the MMD will not necessarily be coincident in 
time, so in order to provide an estimate for skin SST at the time of the AVHRR 
observation (ݐAVHRR) any change in SST since the ARC SST observation time (ݐATSR) 
associated with heating or cooling of the upper ocean must be accounted for. This is 
done using the time series of the matched drifting buoy data, which is assumed to capture 
any change in the sub-skin SST. The drifting buoy time series is interpolated to the ARC 
and AHVRR SST times, and the difference in sub-skin SST, ݀ܵܵܶ = ܵܵ bܶuoy(ݐAVHRR) −
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ܵܵ bܶuoy(ݐATSR) is found. The skin temperature at the time of the AVHRR is then assumed 
to be: ܵܵ sܶkin(ݐAVHRR) = ܵܵ sܶkin(ݐATSR) + ݀ܵܵܶ    (3.4) ܵܵ sܶkin(ݐAVHRR) is then used together with the atmospheric state defined by NWP data as 
input to the forward model to calculate the simulated BTs. The bias adjustment is 
calculated by fitting a function to the simulated minus observed (S-O) BTs that depends 
on parameters identified as a source of forward model bias. 
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Figure 3.2.  Flow diagram showing the simulation minus observation (S-O) bias 
correction process. ‘ATSR’ here is either AATSR or ATSR-2, and AVHRR is any of 
the AVHRR series. The fast radiative transfer model (RTM) is RTTOV 10.2. The full 

RTM is a line-by-line model. 

 

This document is to be used with the ESA SST_cci Version 1 (v1) products.



  
CCI Phase 1 (SST) SST_CCI-ATBDV2-UOE-001 
SST CCI Algorithm Theoretical Basis Document v2 Issue 1 

  Page 49 

For the AVHRRs, the bias adjustment for the S-O difference is parameterised using the 
formula: 

௔adjustedݕ = ௔ݕ − (ܽ + ܾ iܶnst) − ൬ܿ + ݓ݀ + ݁ ߠcosݓ + ݂ ln(ݓ) + ݃ dܶiff + ℎ 1ܶdiff + ݅ ݓ1 + ݆ 1cos  ൰ߠ
(3.5) 

where 

iܶnst is the AVHRR instrument temperature in K ݓ is the prior total column water vapour, kg m-2 ߠ is the satellite view zenith angle 

dܶiff is the prior skin SST minus the minimum (tropopause) temperature in the NWP 
profile 

These predictors for AVHRR extend the set described previously for ATSR (terms with 
coefficients h, i and j) as systematic differences in S-O remained when using the ATSR 
set defined in Section 3.1.2. The secular trend term for the ATSR (bJ) is replaced with a 
term using the AVHRR instrument temperature bTinst since it is temporal changes in 
instrument temperature that dominate secular changes in calibration for AVHRR 
[RD.298]. 

The coefficients a … j were obtained by ordinary least squares regression against S-O 
values extracted with NWP information from the SST CCI MMD [RD.232]. The AVHRR 
bias adjustment coefficients are defined for each channel, view and sensor in Table 3.4. 

3.2.3 Channel combinations 

The SSTs used in the AVHRR L2P products in the CCI [RD.175] are two or three 
channel, depending on the zenith angle. If the solar zenith angle exceeds 92.5° for a 
given nadir pixel, then the nighttime channel combination of the 3.7, 11 and 12 μm 
channels is used. If the angle is less than 87.5° the daytime channel combination of the 
11 and 12 μm channels is used.  When the solar zenith angle is between 87.5° and 92.5° 
twilight conditions are assumed and no SST retrieval is made. 
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Table 3.4. Bias adjustment coefficients applied to RTTOV BT simulations for 
AVHRRs 

Instrument Channel a b c d e 

avhrr12 3.7 -1.03061 0.077237 -3.70636 -0.03775 0.006652 
avhrr12 11 -0.80425 0.054159 -3.62532 -0.05081 0.005569 
avhrr12 12 -0.438 0.054002 -3.86683 -0.05197 0.006259 
avhrr14 3.7 -1.56519 0.103146 -5.9979 -0.03369 0.004536 
avhrr14 11 -1.25922 0.089544 -7.45862 -0.05767 0.00495 
avhrr14 12 -1.30708 0.113816 -9.47586 -0.07386 0.0055 
avhrr15 3.7 -0.45629 0.020175 -2.08524 -0.02735 0.007016 
avhrr15 11 -0.46203 0.020167 -1.66913 -0.03818 0.012122 
avhrr15 12 -0.1661 0.008715 -3.92234 -0.04931 0.013497 
avhrr16 3.7 -0.26174 0.015522 -3.08428 -0.02621 0.005479 
avhrr16 11 -0.38161 0.040191 -3.62038 -0.04197 0.006465 
avhrr16 12 -0.15195 0.034111 -5.16817 -0.04233 0.004744 
avhrr17 3.7 -0.36679 0.015311 -2.84477 -0.02306 0.001323 
avhrr17 11 -0.72575 0.041975 -2.97294 -0.03736 0.003977 
avhrr17 12 -0.24191 0.020228 -4.6363 -0.04635 0.003929 
Avhrr18 3.7 -0.01902 -3.4E-05 -3.75325 -0.02813 0.00584 
Avhrr18 11 0.180827 -7.2E-05 -4.5128 -0.05002 0.006281 
Avhrr18 12 0.35517 -8.5E-05 -6.10092 -0.05897 0.007411 
METOP 3.7 0.045147 2.51E-05 -2.88074 -0.02561 0.002296 
METOP 11 0.244829 8.89E-07 -3.56358 -0.04184 0.003466 
METOP 12 0.32171 -1.7E-05 -5.27331 -0.05008 0.004427 
avhrr12 3.7 0.896 0.009679 61.4904 4.53109 -0.13791 
avhrr12 11 1.16359 0.007681 53.9317 6.3168 -0.38073 
avhrr12 12 1.17069 0.009603 50.6755 6.09757 -0.32723 
avhrr14 3.7 0.796622 0.026348 163.481 3.01015 -0.16712 
avhrr14 11 1.41212 0.026807 173.988 6.26934 -0.29316 
avhrr14 12 1.82222 0.032955 206.417 7.87981 -0.22626 
avhrr15 3.7 0.333638 0.010501 59.1744 1.17352 -0.15591 
avhrr15 11 0.454843 0.009632 46.5326 2.28835 -0.53748 
avhrr15 12 0.760821 0.020532 95.6446 2.99385 -0.5675 
avhrr16 3.7 0.434046 0.01413 76.9577 1.47884 -0.03366 
avhrr16 11 0.771271 0.015453 70.5886 2.73357 -0.23495 
avhrr16 12 0.854712 0.02552 99.5349 2.5106 -0.1554 
avhrr17 3.7 0.506768 0.010097 59.6432 2.26119 0.062472 
avhrr17 11 0.808006 0.007742 47.231 4.09093 -0.14516 
avhrr17 12 1.08598 0.015624 70.183 4.94242 -0.14976 
Avhrr18 3.7 0.538535 0.015978 95.4981 2.31826 -0.06211 
Avhrr18 11 1.0595 0.015836 75.1678 4.81396 -0.22542 
Avhrr18 12 1.22955 0.024756 115.412 5.15026 -0.26487 
METOP 3.7 0.540084 0.00969 60.2711 2.56414 0.044283 
METOP 11 0.888782 0.011344 58.5913 4.21618 -0.1422 
METOP 12 1.11008 0.020242 94.9059 4.92797 -0.19408 
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3.3 Estimator for ATSR-1 SSTs 

In order to use the same optimal estimator for ATSR-1, the following extensions would be 
necessary: 
• extend the state vector to include stratospheric aerosol 
• extend the forward model to model stratospheric aerosol 
• provide a prior estimate and error variance for stratospheric aerosol 
• extend the forward model to accommodate the changing spectral response function 

of the 12 μm channel associated with the trend in ATSR-1 detector temperature over 
the mission 

• develop a model of ATSR-1 noise accounting for noise pick-up from the Stirling cycle 
cooler 

In the absence of these developments, the algorithm selection exercise [RD.226] 
concluded that ARC SST retrieval coefficients would be used for ATSR-1 within the SST 
CCI. Note that this choice remains consistent with the optimal estimators used for all 
other IR SST retrievals as these are bias-corrected using ARC coefficient-based SSTs 
(sections 3.1.2 and 3.2.2). 

The full description of ARC SST retrieval process is given in RD.184, RD.185 and 
RD.186. The following sections present key points on the calculation of the retrieval 
coefficients. 
 

3.3.1 Basis in radiative transfer 

With improvements in the spectroscopic data describing water vapour continuum 
absorption, the coefficients used for SST retrieval are routinely calculated using radiative 
transfer modelling of TOA radiances.  Compared with empirical regression methods, this 
approach has the advantage that the retrieval coefficients are independent of in situ 
observations which is beneficial for climate research. Figure 3.3 provides a schematic 
illustration of the process used to generate SST retrieval coefficients using simulated 
data. The calculation of the retrieval coefficients requires the simulation of the clear-sky 
TOA radiances that would be measured by infrared sensors. The forward model used to 
simulate the TOA clear-sky radiance values consists of a radiative transfer model (RTM), 
spectroscopic data, sensor spectral response functions, and a representative set of states 
describing the atmosphere and sea surface on which to perform the simulations. The 
simulated TOA radiance values are compared with observed radiance for clear-sky 
conditions to determine uncertainties and bias. The simulated TOA radiance values and 
the corresponding state SSTs are used to calculate the SST retrieval coefficients. The 
SST retrieval is then applied to the observed TOA radiance values and the retrieved 
SSTs are validated against in situ observations of the SST. 
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Figure 3.3. Schematic of the process for defining and validating coefficients for sea 
surface temperature retrieval using radiative transfer modelling [RD.253]. 

3.3.1.1 Clear-sky radiative transfer model  

To achieve the required accuracy in the TOA radiance values, - the line-by-line Reference 
Forward Model (RFM; www.atm.ox.ac.uk/RFM/) was used.  The effects of tropospheric 
and stratospheric aerosols and gases interacting with radiation must be simulated. For 
the ARC reprocessing, the scattering by aerosol particles with radii comparable to the 
wavelengths of thermal infrared radiation measured by the sensors, was calculated using 
the DISORT scattering model [RD.300].  This was applied to channel integrated clear-sky 
transmittances derived from the line-by-line RFM calculations. 

RFM was used as it meets the following criteria [RD.301] for simulation of brightness 
temperatures suitable for determining SST coefficients: 

• It is capable of simulating radiances at a spectral resolution of 0.01 cm-1 or better. 
• It includes CO2 line mixing.  
• It is capable of modelling continuum features for water vapour and nitrogen. 
• It can calculate radiance with the assumption that the Planck function varies 

linearly with altitude and that optical depth varies linearly with path within each 
layer. 

• It can enable linear interpolation for profiles of absorber quantities.  
• Voigt line shapes are used for all molecules as default (Lorentz and Doppler line 

shapes can be selected individually). 
• It includes all trace gases that have an impact of >0.001 K on TOA BTs, for any 

channel eg. H2O, CO2, O3, N2O, CH4, NH3, HNO3, OCS, H2CO, N2, C2H6, F11, 
F12, F22, F113, F114, CCl4, HNO4. 

• IT uses the HITRAN spectroscopic database. 

3.3.1.2 Spectral Emissivity Model 

The spectral emissivity model described in RD.186 was adopted for the calculation of the 
ARC coefficients.  The emissivity model uses an isotropic wave facet model to include the 
wavelength dependence on the refractive index of seawater, temperature, wind 

This document is to be used with the ESA SST_cci Version 1 (v1) products.



  
CCI Phase 1 (SST) SST_CCI-ATBDV2-UOE-001 
SST CCI Algorithm Theoretical Basis Document v2 Issue 1 

  Page 53 

roughening of the sea surface and incident and emission angles of radiation relative to 
the ocean surface. 

The salinity effect on refractive index was found to be negligible so is not included in this 
model. The model results have been tabulated and are available in RD.320.  The 
emissivity data are presented as a function of wavenumber (600-3350 cm-1), view angle 
(0-85°), temperature (270-310 K), and wind speed (0-25 m s-1 at 12.5m). 

3.3.1.3 Atmospheric Meteorological Profiles for Radiative Transfer 

A representative distribution of simulated TOA BTs is required to calculate the SST 
retrieval coefficients. This requires a representative distribution of atmospheric states – 
i.e. profiles of atmospheric temperature, water vapour and associated surface variables. 
There are two distinct sources of suitable data: (i) measurements in the form of 
radiosondes, and (ii) simulated data from numerical weather prediction (NWP) models. 
For the calculation of the ARC retrieval coefficients, NWP data from the ECMWF 40-year 
reanalysis (ERA-40) were used as these give a more representative global sample 
compared with radiosonde data. ERA-40 consists of 6-hourly surface and profile data (on 
60 pressure levels) covering the years 1957 to 2001, on a 2.5° horizontal grid. Due to 
resource restrictions such a large data set could not be processed, so basic temporal 
sampling was applied leaving a subset of data covering all times of day for all seasons. 
These were extracted from the “60L-SD” data set [RD.302], used as the starting point for 
the ARC project database. This subset of the data was then filtered to remove: 

• All land or mixed land/ocean profiles 
• All profiles with >95% sea ice 
• All profiles outside RTTOV’s validity range for water vapour  
• All profiles with >95% relative humidity for any layer (such profiles are indicative 

of near-total cloud cover conditions, not representative of clear skies under which 
SST retrievals are possible). 

3.3.1.4 Trace gas profiles 

Trace gases that affect simulated BTs by 1 mK or more were included in the simulations 
for ARC. Some gases have geographic or temporal variations that have a significant 
impact on BTs, whereas for less influential/variable trace gases, global profiles may be 
used. The trace gases used in ARC along with whether annual or latitudinal variations 
were represented are listed in Table 3.5. All the trace gases have secular trends that 
were accounted for.  Details of the trends, annual and latitudinal variations used are given 
in RD.301 and RD.186. 

Table 3.5. Trace gases included in simulations for coefficients and the aspects of 
variability accounted for in each case. 

Gas Long Term 
Trend

Annual Cycle Latitudinal 
Variation 

NH4 Y N N 

HNO3 Y Y Y 

N2O Y N Y 

CH4 Y N Y 

CFC 11 Y N Y 

CFC 12 Y N Y 

CO2 Y N N 
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3.3.1.5 Aerosol simulations 

Tropospheric aerosol number density was assumed to follow an exponential height 
distribution ܰ(ݖ) = ܰ(0)݁൫ି௭ ௛ൗ ൯    (3.6) 

where ܰ(0) is the aerosol concentration at the surface, ℎ is the scale height in kilometres, 
and z is the altitude. The OPAC dataset contains a set of aerosol profiles of this form. 
These aerosol profiles are associated with a range of different geographical locations, 
and differ in terms of the components present and surface concentrations. The Global 
Aerosol Data Set (GADS) was used alongside the optical property dataset (OPAC) to give 
a good representation of the tropospheric aerosol profiles.  

Major volcanic eruptions (Mt. Pinatubo and Mt. Hudson, both in 1991) significantly 
changed the stratospheric aerosol throughout the ATSR-1 mission. Stratospheric 
aerosols produced by major volcanic eruptions need to be simulated in order to ensure 
aerosol robustness of coefficients. In situ measurements of stratospheric aerosol size 
distribution are available for a 30 year period at Laramie, Wyoming [RD.304]. These data 
provided vertical profiles of both the number density and size distribution fitted using a 
bimodal lognormal function. The primary mode represents the more numerous small 
particles, the secondary mode the larger particles which have a greater impact on infra-
red scattering. These data were used to define a background number density and the 
change associated with volcanic aerosols.  The primary mode showed negligible variation 
with time so a single number distribution was derived from the data using equation 3.6, 
where the coefficients based on height are: 

z = 12 – 24 km,             N(0) = 2146.9 cm-3,             h = 2.85921 km 
z = 24 – 32 km,             N(z) = 4 cm-3 

z < 12km or > 32 km,    N(z) = 0 cm-3. 

The particle radius was fixed at 0.025 μm. 

The secondary mode was found to vary from year to year, however it was sufficient to 
define a single number density profile which was scaled by year for the background.  

z = 12 – 24 km,             N(z) = 0.173 cm-3 
z = 24 – 32 km,             N(0) = 4.04370×106 cm-3,    h = 1.41467 km 

z < 12km or > 32 km,    N(z) = 0 cm-3. 

The scale factors for the stratospheric number density profile by year are [RD.186]: 

Table 3.6: Scale factors for the stratospheric aerosol number density profile as a 
function of year. 

Year 1991 1992 1993 1994 1995 1996 1997+ 

Scale 1.0 20.0 9.0 4.0 1.5 0.5 0.3 

The particle radius for the secondary mode was constant at 0.35 μm for the background 
level, but during the years affected by volcanic aerosol (1992-1994) the lower level 
aerosol distribution increased linearly with decreasing height. During 1992/1993 the 
particle size increased from 0.35 μm at 24 km to 0.75 μm at 12 km, while during 1994 the 
size increased from 0.35 μm at 24 km to 0.55 μm at 12 km. 
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3.3.2 Calculation of retrieval coefficients 

The ARC SST estimate, ݔො, is formed from a weighted combination of BTs. 

ොݔ  = ܽ଴ +  (3.7)     ்࢟ࢇ

Here ܽ଴ is the offset coefficient, and ்ࢇ = [ܽଵ, … , ܽ௡] is a vector of ݊ weighting coefficients 
for the ݊ BTs in the observation vector (࢟). These observations may consist of infrared 
observations at different wavelengths and/or view angles. The superscript T  indicates the 
transpose of the vector. 

The offset and weighting coefficients are found using least squares minimization 
techniques. These minimize the mean square difference between the “true” SST input to 
the RTM and the “retrieved” SST, for the population of atmospheric and surface states 
and associated RTM BTs outlined in section 3.3.1. The weights and offset term are given 
by the formulas: 

ࢇ    = ௬௬ᇱିଵࡿ ቂࡿ௫௬ −  ቃ  (3.8)(௫௬࢙௬௬ᇱିଵࡿ்ࡷ)൯ିଵࡷ௬௬ᇱିଵࡿ்ࡷ൫ࡷ

     ܽ଴ = ݔ̅ −  ഥ    (3.9)்࢟ࢇ

where  ࡿ௬௬ᇱିଵ = ௬௬ࡿ + ݕ߲ ,is a matrix containing the impacts on BTs of the presence of stratospheric aerosol ࡷ  .௫௬      is the covariance vector of SST and observations࢙  ఌ        is the covariance matrix for the noise equivalent differential temperature [RD.321]ࡿ ௬௬      is the covariance matrix of observationsࡿ  (࢟) is the “true” SST associated with a given set of simulated BTs         ݔ  ఌࡿ ⁄ߪ߲ , where ߪ is the stratospheric aerosol optical depth. The over-bars indicate mean 
values are used. The covariance matrix of the observations ࢙௬௬ is defined as: 

௬௬ࡿ  = തതതതത்࢟࢟ −  തതതത்    (3.10)࢟࢟

and the covariance vector of SST and the observations, ࢙௫௬, is given by: 

௫௬࢙  = തതതതത்࢟ݔ −  തതതത்    (3.11)࢟ݔ

Use of the ࡷ matrix to represent the effects of aerosol ensures the retrieval coefficients 
are robust to the presence of stratospheric aerosol since this formulation forces the 
coefficients to be orthogonal to the effects of the aerosols. 

The coefficients are calculated at predefined values of the following parameters: 
• satellite zenith angle in the nadir view 
• satellite zenith angle in the forward view 
• prior TCWV 
• instrument detector temperature 
• year 
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The coefficients applied for a given SST retrieval are found by interpolating the tabulated 
values based on these parameters. Bilinear interpolation is used to interpolate the 
satellite zenith angles, and linear interpolation used for the other parameters. 

3.4 Estimates of Uncertainty 

Estimates are generated for four sources of uncertainty [RD.306]: (i) uncertainty due to 
radiometric noise, (ii) uncertainty in retrieval (e.g. insufficient information in the channel to 
derive an SST estimate), (iii) uncertainty due to large scale effects, and (iv) the 
uncertainty in the adjustment for diurnal variability (method described in section 6). 

For OE2, the uncertainty due to radiometric noise and uncertainty in retrieval are defined 
respectively as [RD.307]: 

     ඨܩ ൥3.72ߝ 0 ⋯0 112ߝ ⋯⋮ ⋮ ⋱൩  (3.12)   ்ܩ

and 

     ඩܩ ൭൥ߝோ்ଶ 0 ⋯0 ோ்ଶߝ ⋯⋮ ⋮ ⋱൩ +  (3.13) ்ܩ൱்ࡷ௔ࡿࡷ

where G is the gain matrix described in section 3.1.1. (Note: εRT depends on the channel 
wavelength and the satellite zenith angle). 

The radiometric noise is assumed to be independent between pixels in an image; 3.12 
estimates the SST uncertainty associated with uncorrelated effects. The remainder of the 
retrieval uncertainty is assumed to be partly correlated between pixels with length scales 
that are, at present, not well quantified, and are assumed to reflect the length scales of 
the atmosphere (synoptic length scales), with magnitude obtained from 3.13. 

For the ATSR1 coefficient-based SST, uncertainty due to radiometric noise is estimated 
by the propagation of the noise through the retrieval equation. The uncertainty is given by 
the equation 

     ඥ∑ ܽ௜ଶߝ௜ଶ௜     (3.14) 

where  

i      is the channel 

εi    is the radiometric noise in channel i 

ai  are the corresponding channel retrieval coefficients for channel i  

For the uncertainty in the retrieval from algorithm effects, the magnitude is estimated from 
the residuals in representative simulations of the retrieval process. It is presently 
assumed that the same correlation length scales apply for the partly correlated effects in 
both coefficient-based and OE retrievals. 

The uncertainty due to large-scale effects is set to be constant (0.1 K) representative of 
regional, seasonally persistent mean differences against validation values [RD.184]. 
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4. GENERATION OF L2P AND L3U PRODUCTS AND 
PROPOGATION OF UNCERTAINTIES 

This section describes the processing chain used to generate L2P and L3U outputs from 
the L1B satellite observations.  The individual steps referred to are described in detail in 
other sections of the document as follows; cloud clearing (section 2), SST retrieval 
(section 3) and SST depth and time adjustments (sections 5 and 6). 

4.1 Generating L2P Data from L1B Data 

The first step in the processing chain is to cloud screen the input data (section 2).  This is 
done using a Bayesian methodology for both the ATSR and AVHRR instruments, taking 
L1B observations and NWP data as input.  For cloud free scenes the skin SST is 
retrieved using optimal estimation for ATSR-2, AATSR and the AVHRRs and coefficient 
based retrieval for ATSR-1 (section 3).  Skin SST is then adjusted for both time and depth 
to provide a bulk SST at one of the two reference times, 10.30 or 22.30 local times 
(sections 5 and 6).  For AVHRR instruments this per pixel data along with the associated 
uncertainties is output in L2P product format.  Uncertainties associated with the SST 
retrieval are broken down into large scale correlated uncertainty, synoptically correlated 
uncertainty, uncorrelated uncertainty and time and depth adjustment uncertainty 
components, as well as providing a total value. 

4.2 Generating L3U Data from L2P Data 

For the ATSR instruments the data are averaged across 0.05° grid cells and provided as 
L3U products as the data resolution is much higher.  Skin and depth SSTs are calculated 
within each grid cell using data classified as clear-sky during the cloud screening process.  
Uncertainties are also propagated onto the reduced resolution grid with the addition of a 
sampling error (section 4.3) and provided with same components as those described in 
section 4.1. 

4.3 Computing estimates of uncertainty on the L3U grid 
Propagating Uncertainties from L2P Pixel Output to the L3U 
Grid 

 

The SST variance for an L3U grid cell is calculated using all available clear-sky pixels 

ௌௌ்	ௌ௞௜௡ߪ  = ቀ	ܵܵܶݎ݈ܽ݁ܥ	2ݏ݈݁ݔ݅ܲതതതതതതതതതതതതതതതതതതതത −	൫ܵܵܶݎ݈ܽ݁ܥ	ݏ݈݁ݔ݅ܲതതതതതതതതതതതതതതതതതതത൯2ቁ ∗ 	  (4.1)  1−ݎ݈ܽ݁ܿ݊ݎ݈ܽ݁ܿ݊

where  

σSkin SST            total error covariance 

SSTClear Pixels     skin SST for all clear sky pixels in the L3U grid cell 

nclear                 total number of clear-sky pixels in the in the L3U grid cell  

If less than five clear-sky pixels are available in a given cell then a minimum error 
covariance of 0.04 K2 is assumed. 

The sample error variance  is given by: 
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௦௔௠௣௟௘ߝ      = ௌௌ்	ௌ௞௜௡ߪ	 ∗ 	 ௡೎೗೚ೠ೏௡೟೚೟ೌ೗ିଵ    (4.2) 

where 

 εsample             sample error covariance 

 ncloud              total number of cloudy pixels 

 ntotal          total number of pixels in L3U grid cell 

The total error variance is assumed to be uncorrelated and increases with the number of 
cloudy pixels in the L3U grid cell 

௧௢௧௔௟ߝ  = ∑ఌ೎೗೐ೌೝඥ௡೎೗೐ೌೝ +  ௦௔௠௣௟௘    (4.3)ߝ

where 

εtotal             L3U SST error variance 

εclear            error variance for clear-sky pixels in L3U grid cell 

4.4 Other Data Provided in the L2P and L3U Files 

The L2P and L3U files also contain flags to assign each pixel or grid cell as land/ocean or 
sea ice and to record how many channels were used in the SST retrieval.  If a pixel or 
grid cell crosses a boundary then both of the applicable conditions will be flagged. 
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5. MODEL OF SKIN-SUBSKIN DIFFERENCE IN SEA SURFACE 
TEMPERATURE 

5.1 Background 

The upper few millimetres of the ocean is referred to as the skin layer.  This is cooler than 
the sub-skin layer immediately below due to latent and sensible heat exchanges with the 
atmosphere and surface emission of infrared radiation.  The sub-skin layer exhibits a 
diurnal variation in temperature and depth, governed by absorption of solar radiation and 
wind driven mixing. The deeper mixed layer of the ocean lies below this and is largely 
unaffected by surface processes.  The temperature of this layer is often referred to as the 
bulk sea surface temperature.  

Space-borne infrared instruments measure the temperature of the upper few microns of 
the sea surface whilst in-situ data from buoys or ships are typically a measure of the bulk 
SST. Depth adjustment of the retrieved SST is necessary to meet user requirements of 
consistency between satellite and in-situ data records.  The bulk SST is calculated from 
the skin SST in a two-step process, first correcting for the cooler skin layer and then for 
the warm sub-skin layer. This section describes the algorithm used to calculate the sub-
skin SST from the skin SST and section 6 details the correction from the sub-skin 
temperature to the bulk SST.   

5.2 Model Setup 

The temperature difference (∆T) between the skin and sub-skin SST is described by the 
following relationship [RD.319]. ∆ܶ = 	 ஛ொʋ௞௨∗    (5.1) 

where 

∆Tc      temperature difference across the skin to sub-skin layer (K) 

Q         total cooling at the ocean-atmosphere interface (W m-2) 

δ          thickness of the cool skin layer (m) 

k          thermal conductivity of water (Wm-1  K-1) 

This can be parameterised under shear and buoyancy driven conditions denoted by 
subscripts (s) and (b) respectively [RD.227]. 

 ∆ ௖ܶ௦ = ఒொ௩௞௨∗ೢ     (5.2) 

∆ ௖ܶ௕ = ൬ ௩஺య௚ఈఘ௖೛௞మ൰ଵ/ସ ܳ/ܳ௕ଵ/ସ   (5.3) 

where  

λ          empirical coefficient 

v          kinematic viscosity of water (m2 s-1) 
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ρ          density of sea water (kg m-2)  

u*w       friction velocity in the ocean for turbulence generated by convection (m s-1) 

A          empirical constant 

g          gravitational acceleration (m s-2) 

α          thermal expansion coefficient for water (K-1) 

cp         specific heat capacity of water (J kg-1 K-1) 

The Fairall model combines the shear and convective effects to define λ used in the 
calculation of the thickness of the cool skin layer (δ). This gives an expression for the skin 
depth that is valid both at low-wind speeds (when convective effects dominate) and at 
higher wind speeds (when shear dominates).  In the Fairall model, λ is given by equation 
5.4 where λ0 and A are pre-determined coefficients, set to 6.0 and 0.23 respectively 
[RD.227].   

λ = λ଴ ൥1 + ቆఒబర஺యொ௚ఈఘ௖೛௩್௨∗రೌ ቀఘೌ ఘൗ ቁమ௞మ ቇଷ ସ⁄ ൩ିଵ ଷ⁄
    (5.4) 

We drive the Fairall model with ERA-Interim numerical weather prediction (NWP) data, 
available globally at 6 hour time intervals from 1979 [RD.38].  Over a wind speed range of 
0-10 m s-1 this model has been shown to give the best estimate of the skin to sub-skin 
temperature difference [RD.262].  In RD.266 the optimal parameterisations of A and λ 
were considered.  Figure 5.1 shows the temperature difference between the skin minus 
sub-skin ∆T at two different times (the observation and reference times).  The reference 
time (t0) is the time to which the SST measurements are adjusted, either 10.30 or 22.30 
depending on the observation time.  The black curve shows the model results using the 
Fairall coefficients (A = 0.23, λ = 6) and the grey curve the model results with an 
alternative proposed set of coefficients (A = 0.15, λ = 4.1) [RD.266].  The comparison is 
constructed using data from the SST CCI Multi-sensor Matchup Database (MMD) which 
contains both satellite observations and coincident in situ data. There is a maximum 0.03 
K reduction in the mean SST difference between the cool skin and sub-skin layer 
between the model results using and the Fairall coefficients those using the new 
coefficients.  The modelled sub-skin to bulk (0.2 m) temperature difference (shown in pale 
grey) indicates that the warm layer has a negligible contribution to this difference. 
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Figure 5.1. Plots show the mean SST difference with hours from the reference time 
(10.30 for the top panel, 22.30 for the bottom panel). Specifically, we plot Tskin–

0.2m(t) − Tskin–0.2m(adjusted-time).  Black + shows the results using λ=6, A=0.23; 
grey ◊ is using λ=4.1, A=0.15.  For comparison pale grey x shows the same 

difference but for warm layer rather than the cool skin, i.e. Tsub-skin–0.2m(t) − Tsub-skin–

0.2m(adjusted-time).  Dotted lines are ±6h from the adjusted time (i.e. 10.30 or 22.30). 
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To choose between the alternative parameters in SST CCI processing, the skin minus 
sub-skin difference between the day and nighttime model results were compared with the 
equivalent AATSR minus drifting buoy differences between 2003 and 2010 (Figure 5.2).  
The cases were separated into three groups, depending on the number of clear pixels in 
the 9x9 box centred on each matchup location.  The cases with fewer clear pixels (2-40) 
are more likely to be cloud contaminated.   The upper panel shows the performance of 
the previously suggested coefficients (A = 6, λ = 0.23) and the lower panel the new 
coefficients (A = 4.1, λ = 0.15).  For the two groups with the largest number of clear 
pixels, the existing coefficients give the best performance with a very close match 
between the model results and drifting buoy observations.  The pale grey diamonds show 
the sub-skin minus bulk SST differences which are comparatively small. This is taken to 
justify our use of Fairall’s original parameters (A = 6, λ = 0.23) rather than the alternative. 

 

Figure 5.2. Mean of Tskin–0.2m(night) − Tskin–0.2m(day), night defined as 22:00–
24:00, day as 08:00–12:00.  Black □, AATSR skin – drifter buoy 0.2 m; grey ◊, Fairall-
Kantha-Clayson model, pale grey ◊, Tsub-skin–0.2m(night)−Tsub-skin–0.2m(day).    
Upper panel, λ=6, A=0.23; lower panel, λ=4.1, A=0.15.  Error bars are 1 standard 

error.  Data period is 2003–2010. 

5.3 Forcing Data for the Skin to Sub-Skin Model 

The NWP data used is ERA-Interim, which has a resolution of 0.75° latitude and 
longitude. The model implementation follows that of the UK Met Office [RD.262] and is 
designed to use 6-hourly fields, using 3-hourly forecast fields coincident with the 6-hourly 
analysis fields. Table 5.1 lists the fields used to force the skin-to-sub-skin SST model. 
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Table 5.1. NWP inputs to the Fairall-Kantha-Clayson model.  ERA-Interim codes are 
provided in brackets, acronyms ‘an’ and ‘fc’ refer to analysis and forecast fields 

respectively. 

ERA-Interim Field and Code Fairall Kantha-Clayson Field 

SST (34, an) SST (Fairall, and to initialise KC) 

10m E wind (165, an) 10m wind speed (to initialise KC) 

10m N wind (166, an) 10m wind speed (to initialise KC) 

Sensible heat flux (146, fc) Non-solar heat flux 

Latent heat flux (147, fc) Non-solar heat flux and latent heat flux 

Net surface thermal radiation (177, fc) Non-solar heat flux 

Net surface solar radiation (176, fc) Solar heat flux 

E turbulent stress (180, fc) Wind mixing energy (friction velocity) 

N turbulent stress (181, fc) Wind mixing energy (friction velocity) 

5.4 Uncertainty estimate 

It is necessary to estimate the uncertainty in the skin model when forced by the ERA-
interim NWP. The data used above (fig. 5.2) consist of a double difference between day 
and night, skin minus sub-skin SSTs; in each case, this double difference removes the 
satellite SST minus buoy bias (which is the same for the day and night).  The uncertainty 
estimate therefore includes variance in both the satellite and buoy measurements and 
variance in the cool skin temperature.  The random uncertainty in the buoy 
measurements is estimated as 0.04 K [RD.266].  For group three, defined in section 5.2, 
where all 81 pixels in the matchup were classified as clear–sky, the model minus 
observation variance is defined below [RD.266].  The time window was reduced to ±1 h to 
reduce the variation due to changes in the slope of the mean difference. ߪmodel‐obs,day‐nightଶ ≈  ଶ    (5.5)ܭ	0.045

 The estimated variance due to instrument and buoy noise and is 

AATSR+buoy,day‐nightଶߪ  ≈  ଶ   (5.6)ܭ	0.014

 implying a total uncertainty of  ߪskin‐0.2m,day‐nightଶ ≈  ଶ   (5.7)ܭ	0.031

which is approximately 4 times larger than the model variance [RD.266]. 

 

5.4.1 Model for Residual Bias and Uncertainty 

The skin minus sub-skin SST differences between day and nighttime observations in 
Figure 5.2 indicate that the residual bias can be assumed to be zero.  The residual 
variance (σ2) within ±6 h of the adjustment time can be approximated using a linear fit 

σ2 = b [t − t0]     (5.8) 
  

 where 
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 t       observation time 

 t0      adjustment time 

 b      constant 

  

 b is defined with respect to the adjustment and observation times: 

b = 0.0040 for:    t0 = 10:30,     04:30 < t < 10:30 

b = 0.0012 for:    t0 = 10:30,     10:30 < t < 16:30 

b = 0.0012 for:    t0 = 22:30,     16:30 < t < 22:30 

b = 0.0009 for:    t0 = 22:30,     22:30 < t < 04:30 

 

5.4.2 Temporal and spatial correlations 

The temporal and spatial correlation of the skin SSTs will be dependent on the 
meteorological situation.  The cool skin is an instantaneous effect of solar insolation and 
wind speed, independent of their history, and therefore the correlation scales are likely to 
be smaller than those for the sub-skin layer (section 6.4.1).  The correlation time is in the 
region of 6 hours with a correlation distance compatible with the NWP grid resolution of 
0.75° [RD.266]. 
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6. MODEL OF SUBSKIN-DEPTH DIFFERENCE AND TIME-
ADJUSTMENT DIFFERENCE  

6.1 Background 

As described in Section 5.1, to derive bulk SST from satellite observations of skin SST 
two corrections have to be applied: first an adjustment from the cool skin to the warmer 
sub-skin layer and second an adjustment from the sub-skin layer to the bulk SST. This 
second step requires an estimation of the stratification of the near-surface ocean between 
the sub-skin and the target depth, as the sub-skin layer exhibits a depth dependent 
diurnal cycle in SST.  The CCI project generates SST retrievals from a number of satellite 
instruments, making observations at different local times.  In order to compare these 
observations with one another and with historical in-situ observations of SST a time 
adjustment is also applied.  Both depth and time adjustments will be described in this 
section. 

6.2 The Model 

6.2.1 Model Choice 

The Kantha-Clayson model is used to make the sub-skin to bulk SST correction. This is 
coupled with the Fairall model for skin to sub-skin temperature conversion described in 
Section 5.  The Kantha-Clayson model describes turbulence in geophysical boundary 
layers on the basis of second order closure models. It includes shear instability mixing in 
the stratified ocean, below the sub-skin layer, and diffusive heat transfer [RD.263, 
RD.262].  As with the Fairall model, it uses NWP data to describe local ocean-atmosphere 
conditions. 

6.2.2 Model Setup for Sub-Skin to Bulk SST Adjustment 

The Kantha-Clayson warm layer model is implemented using code provided by the UK 
Met Office.  The model vertical resolution decreases with depth: from two centimetres at 
the surface to sixty centimetres at a depth of ten metres, and is run at a temporal 
resolution of ten minutes.  In the UK Met Office implementation, the evolution of 
temperature (T) over time (t) for a single layer is defined as 

 

    ௧் = ଵ௭ 		 ௩ఙ೛ + ுܭ 	 ௭் + ொఘ஼೛          (6.1) 

where 

z       layer depth 

v       molecular viscosity 

σp     molecular Prandtl number 

KH      turbulent diffusion 

Q      heat source 

ρ       layer density 
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Cp       specific heat capacity of seawater 

The molecular mixing terms defined in the model (ܭHB and ܭMB) were modified to 
represent the diurnal thermocline rather than the entire oceanic mixed layer [RD.262].    
Background salinity is set at 35 PSU and modified by evaporation although no 
precipitation is included in the model [RD.262, RD.266].  ERA-Interim NWP fields are 
used as input at a 6 hourly temporal resolution.  At each time step, the sub-skin to bulk 
temperature differences are output for depths of 0.2, 1.0 and 1.5 metres. 

6.2.3 Model Setup for Time Adjustment 

As the Kantha-Clayson model needs a few hours to stabilise, it is initialised from a start 
time 17 hours earlier than the first dawn prior to the reference time: 12 hours for the 
adjustment period and a further 5 hours for the model initialisation. This gives a maximum 
lead time of 24 plus 17 hours prior to the SST adjustment time as the model has to be 
initialised just before dawn.    The first stage of the implementation is to produce the fields 
in the second column of Table 5.1 at a six hour temporal resolution. 

The input fluxes are then interpolated to the model temporal resolution of ten minutes.  
Non-solar fluxes and fields are interpolated using Lanczos re-sampling, over a period of 
12 hours (i.e. two 6-hour NWP model time-steps).  The UK Met Office method [RD.264] is 
used to interpolate the solar flux.  The equivalent peak insolation is calculated from the six 
hourly fluxes, linearly interpolated in time, and used to derive the solar flux.   

6.2.4 Model Parameter values 

The parameters recommended for the Kantha-Clayson model set-up are described in 
detail in RD.266. 

6.3 Model Performance and Criteria for Time Adjustment 

Model performance is assessed using data from the Multi-Matchup Database (MMD) 
[RD.266].  For each matchup a time series of buoy measurements is available.  Assuming 
two or more measurements, a dataset of temperature differences between the reference 
and adjustment times is constructed, using each measurement in turn as the reference 
time.  Similarly, the same set of differences is calculated from the model time series and 
using the model minus measurement differences.  The results are binned into ten minute 
time steps corresponding with the model output.  For each matchup the time range for 
inclusion of satellite observations or in-situ measurements is ±12 h around the reference 
time. 

The mean diurnal cycle of temperature differences are shown in Figure 6.1, compared 
against buoy data.  The model follows the measured diurnal cycle very closely with a lead 
of approximately 1.5 h, giving a residual difference of about 1/5 of the observed diurnal 
cycle.  The phase shift may be due to errors with the NWP fields of their interpolation; it is 
not clear what physical effect would give a phase lead in the Kantha-Clayson model 
[RD.266].  
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Figure 6.1. Plots show the mean  change in SST difference away from the adjusted 
times (10.30 for the top panel, 22.30 for the bottom panel). Specifically, we plot 
T0.2m(reference time) − T0.2m(adjustment-time).  Black +, drifting buoy 
measurements; pale grey x, Kantha-Clayson model; grey ◊, model−buoy.  The lines 
through the points show the fit to diurnal and semi-diurnal harmonics (section 6.4).  
Dotted lines are ±6h from the adjustment time. 
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Satellite observations are adjusted to the standard observation times of 10.30 and 22.30 
when the sub-skin temperature is closest to the mean daily temperature.  The ATSR 
instruments most closely match these observation times and currently provide the most 
accurate SST retrievals.  Figure 6.2 shows the variance between the time-adjusted SST 
and reference SST for buoy and model measurements at both 10.30 and 22.30, using 
data from the MMD.  One option for choosing the reference time against which to adjust 
the observation is to pick the condition under which the variances are approximately 
equal.  Figure 6.2 shows that this would result in more observations being corrected to 
22.30 than 10.30.  The observations are therefore adjusted by choosing the closest 
reference time.  This has the advantage over assigning ‘day’ and ‘night’ conditions of 
achieving a maximum time difference between the observation and reference time of six 
hours.   

 

 

Figure 6.2. Variance of T0.2m(reference time) − T0.2m(adjusted-time).  Black +, drifting 
buoy measurements; pale grey x, Kantha-Clayson model; grey ◊, model−buoy.  The 
lines through the points are linear fits constrained to zero at 10.30 (top panel) and 
22:30 (bottom panel).  Dotted lines are ±6h from 10.30 and 22:30.  Buoy and 
model−buoy have the estimated combined buoy random noise and discretisation 
error (variance=0.042) subtracted. The curves for the measurements and the 
difference have been reduced by the estimated variance for the buoy temperature 
differences of 0.0016 K2. 
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6.4 Quantification of Uncertainty 

The residual bias shown in Figure 6.1Error! Reference source not found. can be fitted 
to a combination of diurnal and semi-diurnal harmonics: ݁ = ܽ଴(ݐ଴) + ܽଵ cos ቀଶగ(௧ିఝభ)ଶସ ቁ +ܽଶ cos ቀଶగ(௧ିఝమ)ଶସ ቁ  (6.2) 

where ܽଵ = 0.022 ܽଶ = 0.0043 ߮ଵ = 9.5 ߮ଶ = 11.6 ܽ଴(10.30) = −0.025 ܽ଴(22.30) = 0.017 

These functions are plotted in Figure 6.1 and the fit is excellent within ±6 h of the 
reference times.  The residual variance can be approximated within ±6 h of the reference 
time by a linear fit: 

σ2 = b [t − t0]      (6.3) 

where 

t       observation time 

t0      adjustment time 

b      constant 

 

b is defined with respect to the adjustment and observation times: 

b = 0.0042 for:     t0 = 10:30,     04:30 < t < 10:30 

b = 0.0054 for:     t0 = 10:30,     10:30 < t < 16:30 

b = 0.0030 for:     t0 = 22:30,     16:30 < t < 22:30 

b = 0.0020 for:     t0 = 22:30,     22:30 < t < 04:30 

 

6.4.1 Temporal and spatial correlations 

The temporal and spatial correlation of time and depth adjusted SSTs are dependent on 
the meteorological situation.  At small scales, correlation times can be less than an hour 
[RD.222] and correlation distances can be less than 25 km [RD.265]. 
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An estimate of the correlation time for the residual error can be made from the variance 
curves (Figure 6.2).  The errors appear to be correlated to about 6 h for the 10:30 
adjustments and 8 h for 22:30 adjustments.  Variance curves calculated for other 
reference times have a similar shape and scale with a correlation time near 6 h. 

The in-situ information in a matchup is at a single point, so there is no information from 
which to estimate the spatial correlation.  This is assumed to be similar to NWP grid scale 
at 0.75°. 
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7. IMPROVEMENTS IN SEA SURFACE TEMPERATURE ANALYSIS 
IN OSTIA (LEVEL 4 SSTS DEVELOPMENTS) 

The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system was 
developed at the UKMO where it is run in near-real time (NRT) daily [RD.213].    OSTIA 
uses satellite and in-situ SST data, together with sea ice concentration data, to produce a 
global gridded SST and sea ice analysis on a 0.05° grid with no data gaps (known as a 
‘Level 4’ data product).   An OSTIA reanalysis system has been developed largely based 
on the near real time (NRT) system and has been used to produce a SST reanalysis for 
the period 1985 to 2007 (OSTIA reanalysis v1.0) [RD.239].  This reanalysis system is 
used in the first phase of the CCI SST project to produce the Level 4 product using 
satellite data only [RD.175].  The analysis process in OSTIA is not described in detail 
here; instead the reader is referred to recent OSTIA publications [RD.213, RD.239]. 

This section details and justifies the improvements made to the SST analysis in the 
OSTIA reanalysis system for the CCI SST project.    OSTIA uses a background error 
covariance matrix to determine how observation increments are spread on to the 
background field.  Previously, these error estimates were calculated from model results 
as described in [RD.213].  Development work has been carried out to improve the 
parameterisation of this covariance matrix by estimating the background error covariance 
parameters using observation-minus-background differences from the Along Track 
Scanning Radiometer (ATSR) and drifter data obtained from the OSTIA reanalysis v1.0.  
This development work is described here together with results from experiments used to 
assess the impact on the accuracy of the SST analysis. 

7.1 Background 

The OSTIA system assimilates SST observations onto a background field based on 
persistence of the previous day’s SST analysis with a slight relaxation to climatology. The 
weight and degree to which an observation is spread in this assimilation is dependent on 
both the observation error covariance matrix and the background error covariance matrix 
in the Optimal Interpolation (O.I.) equation [RD.213]. Within the OSTIA SST assimilation, 
the observation errors are assumed to be spatially uncorrelated so the spatial spreading 
of an observation is wholly determined by the background error covariance matrix. See 
[RD.213] for a full description of the OSTIA SST assimilation scheme. 

The background error covariance matrix is too large to specify explicitly. It is 
parameterised into a diagonal matrix of background error variances with the off-diagonal 
elements specified using a second-order auto-regressive (SOAR) function which spatially 
correlates the background errors. The background error variance and background error 
correlation length scale parameters are estimated using the Hollingsworth and Lonnberg 
technique [RD.278]. 

A more realistic representation of the background errors than those obtained from model 
results is achieved by using observation minus background differences from ATSR and 
drifter data. These are decomposed into small scale errors associated with mesoscale 
ocean variability, hereafter referred to as mesoscale background errors, and larger scale 
background errors that occur over the scale of atmospheric synoptic systems, hereafter 
referred to as synoptic scale background errors [RD.280]. Each component of the 
background error will have an associated error variance and error correlation length 
scale, these will combine to give the total background error variance and an effective 
correlation length scale. 

The Hollingsworth and Lonnberg method uses observation-minus-background (O-B) 
differences to estimate the background error covariance parameters. Observation-minus-
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background differences from the OSTIA reanalysis v1.0 [RD.239] for drifting buoy and 
ATSR observations were used in the estimates presented here. 

7.2 Description of method to derive covariance parameters 

7.2.1 Theoretical Description 

The Hollingsworth and Lonnberg technique [RD.278] estimates the background error 
covariances from the spatial covariances in the observation-minus-background (O-B) 
differences. The method assumes that observation errors are spatially uncorrelated so 
correlations in the O-B differences can be attributed to correlations in the background 
errors.  The background error variance within a grid box is estimated by extrapolating the 
O-B covariances back to zero separation distance. 

The Hollingsworth and Lonnberg technique requires the observations used in the 
estimation to be unbiased. To this end observations from the OSTIA reanalysis v1.0 from 
drifting buoy and the AATSR satellite, which have both been shown to be of high quality, 
were used in the calculations presented here. Another requirement for the technique to 
give meaningful results is that the spatial coverage of the observations is good. This is the 
case for the satellite observations and the drifter network is deemed sufficiently mature to 
provide global coverage by 2002. 

7.2.2 Processing Outline 

The background error covariance parameters are estimated using the Hollingsworth and 
Lonnberg technique. Output from the OSTIA reanalysis v1.0 [RD.213] was used in the 
estimates presented here. 

O-B differences were calculated by bi-linearly interpolating the OSTIA reanalysis v1.0 
background field to the observation location. To reduce the resources required in the 
estimation of the covariances, the AATSR observation-minus-background differences 
(which are at the 1km observational resolution) were super-obbed using a median method 
with a radius of 6km. 

The covariance estimation described below is carried out on a 1° regular grid. The 
following steps are carried out: 

• 19 bins of separation distance are defined (in km) as follows: [10, 15, 20, 50, 100, 
150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000]. 

• Within each grid square the covariance of each O-B difference with all other O-B 
differences within each of the predefined separation distance bins is calculated.  
These covariances are combined to give a covariance for observations in each 
grid square with all observations within each of the separation distances of it. 

• For the anisotropic calculation (section 6.4) only observations within an angle of ߨ 2⁄  in the North or South direction are used in the calculation of the North-South 
(NS) covariances. Similarly for the East-West (EW) covariances. 

• For each grid square the number of values, the mean and root mean square error 
of observations is output together with the covariances and number of 
observations contributing to the covariance for each of the separation bins.  This 
is done for each day. 

• Daily files are then combined into a single file which allows seasonal, monthly or 
annual covariances to be calculated as well as correlations for the whole run. 

• These files then undergo a further level of processing (detailed below) which 
estimates the background error variances and the correlation length scales for 
each of the two components of the background error covariances for each of the 
1° grid boxes. 
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The O-B covariances are regressed against separation distance for each of the 1° grid 
boxes and two Second Order Auto-Regressive (SOAR) function (equation 7.1) are 
combined to fit the data for each grid box. One SOAR function represents the error 
covariance due to mesoscale ocean features whilst the other represents the error 
covariances due to larger scale atmospheric synoptic conditions. 

(ݔ)݂    = 	 ௠ܸ ቀ1 + ௑௅೘ቁ ݁ቀష೉ಽ೘ቁ + ௦ܸ ቀ1 + ௑௅ೞቁ ݁ቀష೉ಽೞ ቁ  (7.1) 

where ௠ܸ and ௦ܸ are the mesoscale and synoptic scale background error variances, ܮ௠ 
and ܮ௦ are the mesoscale and synoptic background error correlation length scales. 

The fitting routine fits both the background error variances and the correlation length 
scales for both components of the background error.  These are output to a file, along 
with the total background error variance (which is a combination of both the mesoscale 
and the synoptic scale components), the observation error variance and the chi-squared 
fit of the function to the data for each grid. See Figure 7.1 for an example of the fit for a 
specific grid box. 

 

Figure 7.1. Example of the partitioning into mesoscale and synoptic scale error 
components of the SOAR function fitting code to the correlations regressed 

against separation distance. Adapted from RD.294. 

7.3 Summary of analysis of O-B error estimates 

The development of O-B error properties is described fully in RD.294, wherein error 
properties are separated into mesoscale and synoptic scale characterised by the variance 
of error estimate and the correlation length scale.  In summary: 

• Almost full global coverage of the O-B field is achieved using AATSR data, with 
good coverage at high latitudes in the marginal ice zone, and the resolution of the 
error variances is adequate to represent small ocean scale features. 

• Ocean regions with high SST gradients have increased error variance compared 
to previous, less realistic estimates. Mesoscale and synoptic scale variance 
occurs in roughly the same places, although the magnitude of the synoptic 
component is reduced compared to the mesoscale component. 

• Correlation length scales increase toward the equator; the mesoscale (synoptic) 
correlation length scales increase from around 20km (240km) at mid-latitudes 
toward 40km (350km) at the equator; see Figure 6.2 for an example of the 
mesoscale component. 
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• Using a drifter observation-minus-background field as an additional check, it was 
shown in RD.294 that the spatial patterns of the mesoscale and synoptic variance 
are similar for estimates made using both observation types and that this makes it 
unlikely that correlations in the observation error are contaminating the AATSR 
synoptic background error estimate. 

• The better observational coverage of the AATSR estimates mean that seasonal 
estimates of the covariance parameters can now be made.  The improved spatial 
coverage at high latitudes mainly contributes in the Summer Hemisphere.  The 
synoptic variances show a distinct seasonal cycle, although this could be a due to 
contamination of the diurnal warming signal during the summer. 

• The EW and NS estimates of the background error variances were similar. 
Anisotropy was observed in the error correlation length scales but the patterns of 
zonal lengthening towards the equator were common to both the EW and NS 
estimates. 

7.4 Implementation 

The estimated background error covariance parameters described in section 7.2 were 
implemented in the OSTIA system to test the impact of the updates on the OSTIA SST 
analysis. Global spatial maps of seasonally varying mesoscale and synoptic scale 
background error variances estimated using the AATSR O-B data were implemented. 

The global zonal averages of the correlation length scales were found to be relatively 
robust across different ocean basins. Anisotropic length scales are parameterised to be 
globally latitudinally varying using the following functional form, 

ܮ     = ௖ܮ + |݁݀ݑݐ݅ݐܽܮ| for) (మ்ି)݁ܣ ≤ 20° )  (7.2) 

ܶ = Latitudeܵ  

ܮ = |݁݀ݑݐ݅ݐܽܮ| ௖ ( forܮ ≥ 20° ) 
Where L is the final length scale (used for ܮ௖ and ܮ௦ in equation 7.1), ܮ௖ is constant length 
scale, A and S are amplitude and scale parameters respectively. 

 

Table 7.1. Parameter values for the latitudinally varying correlation length scales. 

Scale Direction ܮ௖ A S 
Mesoscale EW 15 km 20 km 10 
Mesoscale NS 20 km 20 km 10 

Synoptic scale EW 200 km 100 km 10 
Synoptic scale NS 250 km 200 km 10 

 

Parameter values differ between the E-W and N-S length scales as well as between the 
mesoscale and synoptic length scale. The parameter values used are shown in Table 7.1. 
The mesoscale parameterisations are shown as the red lines in Figure 7.2. 
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Figure 7.2. Zonal averages of the mesoscale correlation length scales (km) in the 
(a) East-West and (b) North-South direction estimated from the AATSR O-B output. 

7.4.1 Impact of increased Iterations & variable error parameters 

Experiments were conducted to test the impact of using the newly calculated background 
error parameters on the accuracy of the SST analysis in the OSTIA system.  These 
experiments also investigated the impact of increasing the number of analysis iterations 
from 10 to 100 together with the new background errors.  This follows on from recent 
experiments for a different project, which showed that increasing the number of 
assimilation iterations resulted in improvements in the feature resolution of the analysis 
without introducing observational noise through overfitting the data.  The results from 
these experiments were compared to those from the previous OSTIA reanalysis system 
which used background error variances estimated from a model, static length scales of 10 
km (100 km) for the mesoscale (synoptic) components and 10 analysis iterations.   
RD.294 fully describes these experiments and the individual effects of increasing the 
analysis iterations to 100 and allowing the error parameters to vary. 

The accuracy of the OSTIA SST analysis is normally assessed using the O-B differences 
to drifting buoy data; which with the new parameters and 100 assimilation iterations 
reduced from 0.52K to 0.37K. Thus the updates to the background error covariances are 
within the GCOS breakthrough target for analysis accuracy of 0.4K [RD.285]. The 
breakthrough target is the accuracy level, if achieved, that would result in a significant 
improvement for climate applications.  Statistics of the new system relative to ARGO and 
AATSR are shown in RD.294. 

The impact of the updates on the ability of the SST analysis to resolve small scale ocean 
features was studied using the SST gradients. Figure 7.3 (adapted from RD.294) shows 
the impact on the gradient fields in the Gulf Stream region for 31st March 2012, a 
representative day of a month long trial; it is clear that using the updates along with  100 
iterations increases the magnitude of the SST gradients. Analysis of animations shows it 
is more temporally consistent with realistic ocean features and that the updates do not 
create any obvious temporal observational noise in the fields. 

 

 

 

 

 

a) b) 
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Figure 7.3. SST gradients in the Gulf Stream (10*K/m) for (left) a simulation using 10 
iterations and ‘old’ variances, and (right) a simulation using 100 iterations and 

‘new’ variances and length scales. Scale ranges from 0 to 0.0015. Adapted from 
RD.294. 

 

7.5 Assumptions and limitations 

7.5.1 Performance of method of deriving covariances 

The Hollingsworth and Lonnberg estimation technique employed here makes a number of 
assumptions on the error characteristics of the input data. An assumption is made that the 
observation and the background field used in the calculations are independent. In this 
work, the OSTIA reanalysis v1.0 was used, which had an assimilation window of 72 
hours, so observations used in the O-B differences are those within ± 36 hours of 1200 
UTC on the analysis day.  Therefore, the OSTIA background field and the observations 
used in the O-B calculation are not independent; furthermore the O-B field on any given 
day will not be independent of those on previous or subsequent days.  However, during 
the validation of the OSTIA analysis v1.0, the lack of independence between the 
observations and the background field was deemed to have minimal impact on the validity 
of the validation results, see [RD.239] for this discussion. 

It is also assumed that the observations used in the parameter estimation technique are 
unbiased and are not spatially correlated. The drifter and AATSR observations used here 
have been shown to be unbiased, [RD.239]. It might still be expected though that 
observational errors may contain spatial correlations. For the AATSR observations a 
major component of the observation error may be due to errors in the atmospheric 
correction of the satellite retrieval which would be on the scales of atmospheric synoptic 
systems. Smaller scale correlations in the observational errors may also exist due to 
correlations along the satellite swath. The drifting buoy observation correlations would be 
expected between different observations from the same platform over the course of the 
assimilation window. It is expected that these spatial correlations for the different 
observation types occur at different spatial scales. RD.294 showed that estimates 
calculated using both observation types were similar and thus validate each other. 
Without knowing the spatial correlations in the observations explicitly, using different 
observations gives us greater confidence that the impact of violating this assumption is 
minimal. 

The validity of partitioning the background error into those associated with mesoscale and 
synoptic scale variability was considered in RD.294. However the impact of the updates 
presented here on the SST assimilation will be through the total background error 
variances and the effective correlation length scale, i.e. the combination of the two 
components. This means that the possibility of erroneous assignment of O-B variability to 
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one or the other of the components through the function fitting will have minimal impact 
on the assimilation. 

7.6 Conclusions 

The new background error covariance parameters were derived using the Hollingsworth 
and Lonnberg method on O-B output from the OSTIA reanalysis v1.0. Parameters were 
estimated from the AATSR O-B differences for both the mesoscale and synoptic scale 
background error variances and background error correlation length scales. Seasonal 
calculations of the covariance parameters were made and seasonal variability was found 
in the spatial patterns of both components of the error variance. 

The correlation length scales showed less seasonal variability but the length scales were 
found to be latitudinally variable with an increase in the length scale at the equator and at 
mid-latitudes in both mesoscale and synoptic scale components. Anisotropy was also 
found in the correlation length scales with different scales found in the East-West and the 
North-South directions. 

The accuracy of the OSTIA SST analysis was validated using both assimilated drifting 
buoy and AATSR O-B differences globally and in ocean regions. The global RMSE was 
0.37 K for the drifter O-B stats and for the AATSR O-B stats. Using independent ARGO 
data to validate the analysis the global standard deviation error was 0.44 K. The accuracy 
of the OSTIA SST analysis is normally assessed using the O-B differences to drifting 
buoy data; taking this value as 0.37 K, the updates to the background error covariances 
are within the GCOS breakthrough target for analysis accuracy of 0.4 K [RD.285]. The 
breakthrough target is the accuracy level, if achieved, that would result in a significant 
improvement for climate applications. Note that the independent ARGO comparisons are 
also close to the breakthrough accuracy level. 
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8. IMPROVEMENTS IN PRE-PROCESSING SEA ICE DATA IN 
OSTIA (LEVEL 4 DEVELOPMENTS) 

8.1 Introduction 

The OSI-SAF global sea ice concentration reprocessing dataset [RD.43] will be used for 
the OSTIA CCI reanalysis. However, there are a number of data gaps, ranging in length 
from one day to several weeks, resulting from either lack of available data, missing data 
within the ice field or rejection of an unrealistic looking ice field through our own quality 
control. For the previous version of the OSTIA reanalysis (v1.0), ice concentration from 
the previous available day was persisted in the event of a data gap. For gaps of 7 days or 
longer, the ice concentration file at the end of the data gap was copied to the centre and 
persisted to the end of the gap [RD.275]. The aim of this work is to improve upon this 
persistence method, using a simple linear interpolation method based on data 
assimilation theory to fill the sea ice timeseries gaps. 

8.2 Method 

For each location on the ice concentration grid, we require an ice concentration estimate 
for each day of the gap. This estimated ice concentration is weighted by the error 
estimates of the data at either end of the gap, as well as its relative temporal position in 
the gap. This is achieved using the following method. 

A linear model is used for the interpolation of data into the time gap, of the form y = mt + 
c, where y are the observations of ice concentration at a particular grid point at different 
times t, in days. The linear model for the interpolation (y = mt + c) is put into matrices to 
give the model value at observation times. 

Using dataassimilation theory, e.g. [RD.276], a cost function J can be derived: 

  )()( 1 HxyRHxyJ T −−= −
     (8.1) 

Minimising equation (8.1) with respect to x, and rearranging for x gives 
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1t  is day 1, the day available at the start of the gap, and nt  is the day at the end of the 

gap of length n  days. x  are the parameters in the linear model which determine the best 

estimate of ice concentration. R is the observation error, where nV ,1  is the variance of the 

observation errors at nt ,1 (provided with the data). 

Then we can use mx =)0(  and cx =)1(  in the model equation for any nt  in the gap, to 

find the ice concentration ( y ) at this point. It is assumed errors at the start and end of the 

period are uncorrelated. 
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8.3 Results 

Tests were run using OSI-SAF sea ice reprocessing data [RD.43] between 26 May 2002 
and 31 May 2002, for both the Northern and Southern Hemispheres. These dates were 
chosen at random. The method described above was used to generate ice concentration 
fields for four days where complete fields were already available, for comparison. 

Figure 8.1 shows the difference between a sample interpolated field and the actual field 
for both hemispheres. The low ice concentration data outside of the ice edge seen on 
figure 8.1 are erroneous and are filtered out in the OSTIA reanalysis according to 
guidance in the OSI-SAF user manual [RD.43]. The differences between the real and 
interpolated fields are largest around the ice edge (figure 8.1), which is the region where 
the largest day-to-day (and potentially non-linear) changes would be expected, and is 
hence the most difficult to capture using a linear interpolation method. Figure 8.1 
illustrates that the differences are spatially variable, but the overall mean differences are 
small, as shown in table 8.1 

 

Figure 8.1. Interpolated minus real ice concentration field (%) on 28 May 2002, for 
(a) Northern Hemisphere and (b) Southern Hemisphere. 

 

This table gives the differences between both the interpolation and persistence methods 
and the observed (real) ice concentration. We would expect to see some differences 
between the real and interpolated fields since in reality the ice concentration does not 
change according to the linear model used and the rate of change is probably dependent 
on the time of year. However, these differences are smaller than were found for the 
persistence method (table 8.1), demonstrating that even using a changing ice 
concentration field based on a linear approximation is an improvement over persisting the 
ice concentration field from the start of the data gap. Note that the errors of the persisted 
compared to the real ice concentration field continue to grow with time, whereas the 
magnitude of the errors remains relatively similar for the interpolation method (table 8.1 ).  
There is a slight peak in the error magnitude in the centre of the interpolation period, 
which would become larger for a longer data gap. 
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 Northern Hemisphere 

RMSE (mean error) of absolute 
concentration differences, % 

Southern Hemisphere 

RMSE (mean error) of absolute 
concentration differences, % 

Date Interp – real Persist – real Interp – real Persist – real 

20020527  3.81 (2.22) 4.16 (2.39) 3.97 (2.50) 4.65 (2.80) 

20020528  4.53 (2.76) 5.58 (3.32) 5.61 (3.46) 7.55 (4.34) 

20020529  4.52 (2.71) 6.44 (3.83) 5.21 (3.27) 9.07 (5.11) 

20020530  4.03 (2.20) 7.37 (4.37) 3.44 (2.20) 10.08 (5.48) 

 

Table 8.1 : Ice concentration difference statistics (absolute differences). 
Persistence method uses file from 20020526. Statistics calculated using gridpoints 

where ice is present in either file. 

 

Overall, the differences between the real and interpolated fields are small, and as they 
are of a similar magnitude to the day-to-day variation of the real ice concentration fields 
for this time period (not shown) the results show the test is successful. 

8.4 Conclusions 

The method works well and produces good results. It has been used to produce 
interpolated data for the gaps in the OSI-SAF ice concentration timeseries between 1991 
and 2007, which will be used in the CCI reanalysis Level 4 product. 

8.5 Assumptions and Limitations 

Error information in the sea ice files is passed through to the final OSTIA output files (see 
section 5.1). However, when the field is interpolated, the error information is set to 
missing data as no information is available. Status flags are assigned as a separate field 
to the error information and have been set as 100 for land, 12 for sea and 13 for 
interpolated ice concentration data, following the OSI-SAF convention for this dataset. For 
all the interpolated data within a gap, the overall ice extent (where there is any ice above 
0%) does not change. This is because there is always ice above 0% where there is ice in 
either the start or end files. If the minimum is set to 15% for flagging as interpolated ice 
concentration data, the ice area does change in the files, but it has been set to 0% to 
keep the OSI-SAF convention. 

This method works best for shorter gaps. The greater the difference between the ice 
fields at the start and end of the gap, the poorer the results. 

8.6 Future Enhancements 

A few incomplete fields are available which were removed as part of the initial quality 
control, since complete fields with no missing data are required. These could be used to 
add a spatial interpolation component to the method by using the partial data available in 
these fields to inform the interpolation. 
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