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EXECUTIVE SUMMARY 

The work reported in this report describes the development of the Passive Microwave 
(PMW) SST retrieval algorithms for the AMSR-E and AMSR2 instruments and the 
generation of climate data records for Level 2 (L2) and Level 4 (L4). Furthermore, the 
impact on L4 products when ingested in the L4 production system is presented. The SST 
retrieval algorithm validation and developments have been performed using the Multi 
Sensor Matchup datasets (MMS).  

Retrieval algorithms have been developed within WP90 with the purpose of generating a 
L2P SST climate data record from the AMSR-E and AMSR2 passive microwave satellite 
observations for the period 2002-2017. The algorithms include wind speed retrievals and 
SST retrievals, with corresponding uncertainty retrievals and a new and effective method 
for detecting and removing RFI contamination. The thorough validation results against 
independent in situ observations demonstrate that the algorithms developed here generate 
a consistent climate data record, with very good performance, minimal RFI influence and 
reliable uncertainty estimates. The validation results thus show an overall bias and 
standard deviation for quality level 4 and 5 AMSR-E and AMSR2 PMW SSTs against in situ 
drifters of -0.02 ± 0.46 K and 0.002 ± 0.45 K, respectively. The modelled total uncertainty 
estimates are 0.45 K and 0.44 K, respectively. Furthermore, a sensitivity of 0.9 for the 
algorithm ensures retrievals that are able to represent the true variability in the SST.  

A positive impact was found when the AMSR-E and AMSR2 L2 SSTs was included in L4 
SST production system. Outputs indicated that the PMW data were providing information in 
regions where IR data were not available. However, impacts were not restricted to those 
regions, with differences in SST found globally. Statistics from comparisons to independent 
Argo data suggest a positive impact from the use of the PMW data in the L4 system in most 
regions of the oceans. 

The accurate and consistent SST CDR records presented here have demonstrated that 
PMW satellite observations are valuable for monitoring the oceans in non precipitating 
conditions. With the uncertainties in the funding for future microwave satellite missions, it is 
therefore highly recommended that the passive microwave satellite missions, such as the 
Copernicus Imaging Microwave Radiometer (CIMR) are part of the future satellite 
constellation. 

The general details on the PMW2.0 data products are listed in Table 1 below. 

 

Table 1: Overview of the ESA CCI PMW2.0 data products delivered in WP 90  

Acronym Description Data coverage Spatial 
resolution 

Product 
grid 
resolution 

AMSRE - L2P L2P SSTs from 
AMSR-E in L2P 
format  

1 June 2002 -  
4 October 2011 

75 x 43 km 10 km 

AMSR2 - L2P L2P SSTs from 
AMSR-2 in L2P 
format  

2 July 2012 -  
26 October 2017 

62 x 35 km 10 km 

L4 Analysis L4 Analysis 
including IR L3U 
and PMW L2P data 

1 June 2002 -  
26 October 2017 

Effective 
resolution varies 
with location 

0.05 
degree 
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1. INTRODUCTION  

Climate data records of Sea Surface Temperature (SST) have been developed for many 
years using the Infrared (IR) sensors from (A)ATSR, AVHRRs and MODIS. All the infrared 
observations are, however limited, by cloud cover and obtain SST for typically 10% to 15% 
of their swath coverage. The errors in SST between IR sensors typically arise from the 
same parameters, such as unusual atmospheric humidity and aerosol profiles. Microwave 
observations of SST are limited only by non-precipitating clouds, coastal/sea-ice 
boundaries and areas of radio-frequency interference, and offer observational records 
whose errors are likely independent of those of the IR suite.  

However, no Microwave SST climate time series have yet been produced and validated 
previously in SST CCI. The work reported in this report describes the development of the 
Passive Microwave (PMW) retrieval algorithms for SST retrieval algorithm development, the 
generation and validation of a L2 climate data set and the impact on level 4 products when 
ingested in the L4 production system.   

The structure of the report is as follows: The SST retrieval development and validation of 
the L2 PMW SST product is described in Section 3, which is a copy of a scientific paper to 
be submitted to Remote Sensing of Environment. Section 4 describes the technical 
considerations when implementing the PMW retrieval algorithms in the GBCS processing 
system at University of Reading. The impacts of ingesting the PMW data into the ESA CCI 
level 4 production system are described in Section 5. Finally, the report concludes in 
Section 6 with conclusions and recommendations for future satellite missions.  
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2. CONSTRUCTION OF A LEVEL 2 CLIMATE DATA RECORD OF 
SEA SURFACE TEMPERATURE FROM PASSIVE MICROWAVE 
MEASUREMENTS 

2.1 Introduction 

Global Sea Surface Temperatures (SSTs) are important inputs for Numerical Weather 
Prediction (NWP) (Brasnett and Colan, 2016), coupled models (Liang et al., 2017), ocean 
models (Le Traon et al., 2015; Yang et al., 2015), SST analyses (Donlon et al., 2012), 
oceanographic research (Gentemann et al., 2003), air-sea interaction research (Monzikova 
et al., 2017; Ning et al., 2018), and of broad use in understanding changes to the marine 
and ecological environment (Chacko, 2017; Ishizaki, 2014). While infrared satellite SSTs 
have been available since 1981, the satellite microwave radiometer SST record began in 
1997 with the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and 
then continued (with global data) with the launch of the Advanced Microwave Scanning 
Radiometer for EOS (AMSR-E) and other follow-on instruments. Infrared SSTs’ strengths 
are in their high spatial resolution (typically 1-4 km at nadir) and very good radiometric 
fidelity, but retrievals are not possible in the presence of clouds and may be compromised 
in regions with aerosols or unusual water vapour profiles. Passive microwave (PMW) SSTs 
are at a lower resolution (approximately 50 km) but can be retrieved in all weather 
conditions except rain. PMW SST data are not used in the presence of Radio Frequency 
Interference (RFI) or typically within 1-2 footprints from sea ice or land (where the impact of 
side-lobe contamination in the vicinity of a typically large thermal contrast becomes a 
significant source of uncertainty). The PMW SST algorithm is designed to account for water 
vapour and retrievals are not affected by aerosols. Assuming calibration stability over a 
mission lifetime, these two important features of PMW SSTs make them especially valuable 
for long-term climate records. 

PMW SST retrieval algorithms have been developed by several groups and differ in their 
approaches. There are statistical regression algorithms, developed through comparisons 
between measured brightness temperatures and collocated in situ SSTs (Chang et al., 
2015; Shibata, 2006), physically-based regression retrieval algorithms developed through 
radiative transfer modelling (Meissner and Wentz, 2012), and optimal estimation algorithms 
developed using an iterative forward-model, environmental data, and in situ observations 
(Nielsen-Englyst et al., 2018). The statistical and physically-based regression algorithms 
commonly use a multi-stage regression to account for non-linearities in the brightness 
temperatures’ dependence on retrieved variables. The existing algorithms have typically 
been derived for one satellite at the time and for a limited time period or with a limited in situ 
observational database for the tuning and validation.  

In this paper we describe a statistical regression-based SST retrieval algorithm, which has 
been developed within the European Space Agency Climate Change Initiative (ESA-CCI) 
SST project (Merchant et al., 2014) to generate a PMW SST climate data record (CDR). 
The retrieval algorithm has been derived consistently for AMSR-E and AMSR2 using a 
large amount of in situ observations. All SST retrievals are accompanied by an uncertainty 
value and extensive validation has been performed for both the retrievals and the 
uncertainty estimates. The approach taken in this paper ensures a consistent and reliable 
multi-satellite SST CDR based only upon Microwave observation that facilitates the uptake 
within the many applications of SSTs. The paper is structured first with a description of the 
satellite, in situ and auxiliary data, as well as the matchup database used for algorithm 
development and validation, in Section 3.2. Thereafter, the retrieval algorithms are 
described in Section 3.3. The validation results are presented in Section 3.4. Section 3.5 
discusses the results and Section 3.6 contains conclusions and ideas for future work. 
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2.2 Data 

2.2.1 In situ observations 

In this study we use in situ measured sea surface temperature observations from the 
International Comprehensive Ocean-Atmosphere DataSet (ICOADS) version 2.5.1 
(Woodruff et al., 2011), and measurements from the Met Office Hadley Centre Ensembles 
dataset version 4.2.0 (EN4, (Good et al., 2013)). Measurements from drifting buoys are the 
main source of observations but measurements from Argo free-drifting profiling floats (Argo, 
2018; Roemmich et al., 2009) have also been used. The drifting buoys measure the sea 
surface temperature at a depth of about 20 cm in calm water with an uncertainty of 
approximately 0.2°C. The drifting buoy sea surface temperatures have been quality 
checked, as described in Atkinson (2014). The quality flags are provided with the data. For 
Argo floats, the uppermost temperature measurement has been used, which is 
measured at a typical depth of about 5 m (Gille, 2008), with an uncertainty of 0.002°C 
(Abraham et al., 2013; Kennedy, 2014). The quality control of the Argo sea surface 
temperatures is described in (Good et al., 2013). Sea surface temperatures from drifting 
buoys and Argo floats have previously been used for algorithm development and validation 
studies (see e.g. Embury et al., 2012; Høyer et al., 2012; Merchant et al., 2012; Nielsen-
Englyst et al., 2018; Udaya Bhaskar et al., 2009). 

 

2.2.2 AMSR-E data 

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) is a twelve-channel, 
six-frequency microwave radiometer supplied by the Japan Aerospace Exploration Agency 
(JAXA) for the National Aeronautics and Space Administration’s (NASA’s) Earth 
Observation System Aqua platform. It measures brightness temperatures at 6.9, 10.7, 18.7, 
23.6, 36.5 and 89.0 GHz at both horizontal and vertical polarization and at an Earth 
incidence angle of approximately 55 degrees. A 1.6 meter offset parabolic reflector antenna 
collects the microwave radiation and results in spatial resolutions ranging from 
approximately 56 km at 6.9 GHz to approximately 5 km at 89.0 GHz. The 89.0 GHz 
channels are sampled every 5 km, all other channels every 10 km. The dataset used in the 
present study consists of spatially resampled brightness temperatures at the resolution of 
the 6.9 GHz channel (Ashcroft and Wentz, 2013) and covers the period June 2002 to 
October 4, 2011. 

 

2.2.3 AMSR2 data 

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is an instrument on JAXA’s 
Global Change Observation Mission 1st – Water (GCOM-W1) platform. GCOM-W1 was 
launched in May 2012 and began collecting data on July 4, 2012. AMSR2 measures 
brightness temperatures at 6.9, 7.3, 10.7, 18.7, 23.6, 36.5 and 89.0 GHz at both horizontal 
and vertical polarization and at an Earth incidence angle of approximately 55 degrees. Note 
the addition of the 7.3 GHz channels relative to AMSR-E, added for RFI mitigation. AMSR2 
uses a 2 meter offset parabolic antenna to obtain a spatial resolution ranging from 4 km at 
89.0 GHz to approximately 45 kilometres at 6.9 and 7.3 GHz. The 89.0 GHz channels are 
sampled every 5 km, all other channels every 10 km. We use the Dataset of Brightness 
Temperature Modified Using the Antenna Pattern Matching Technique (Maeda et al., 2016) 
which contains similar spatially resampled brightness temperatures to the AMSR-E dataset. 
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2.2.4 Auxiliary data 

Several different datasets have been included in the retrieval and analysis to improve and 
interpret the retrieved parameters. Information of Total Column Water Vapour (TCWV), 
Total Cloud Liquid Water (TCLW), surface winds and sea ice concentration has been used 
from the NWP model ERA-Interim (Dee et al., 2011), which has a spatial resolution of 79 
km. An additional surface wind speed dataset was included from the Cross-Calibrated 
Multi-Platform (CCMP) gridded surface vector winds, which is a product that combines 
many different satellite and in situ observations (Atlas et al., 2011). The product used here 
is version 2.0, which has a spatial resolution of 0.25 degrees.  

 
 

2.2.5 Matchup database 

2.2.5.1 ESA CCI Multi-sensor Matchup Dataset 

The calibration and validation of the retrieval algorithm have been performed using the 
Multi-sensor Matchup Datasets (MMDs), which have been developed within the ESA-CCI 
SST project and contain selected pairs of in situ and satellite observations that are within 
20 km and 4 hours from each other. Subregions of 21 by 21 AMSR-E and AMSR2 pixels 
have been extracted around the central matchup positions and the auxiliary information 
have been extracted for the central points. Separate MMDs have been created for the 
AMSR-E and the AMSR2 datasets, but they follow the same specifications in terms of data 
content and format. For more information on the generation of MMDs, see (Block et al., 
2018; Nielsen-Englyst et al., 2018). The AMSR-E MMD includes matchups for the period 
June 2002-October 2011 and the AMSR2 MMD includes matchups for the period July 2012 
– December 2016. 

 
 

2.2.5.2 Training and validation subsets 

The performance of the retrieval algorithm is closely linked to the quality of the satellite 
observations and auxiliary data used. It is therefore essential to exclude erroneous 
matchups from the training data. The following paragraphs describe the quality control 
procedures implemented during algorithm development. 

The quality of the input data were considered and matchups with a satellite scan quality or 
6-36 GHz channel quality indicating bad data were flagged as erroneous. In addition, 
matchups with brightness temperatures outside the accepted range (0-320 K) were flagged. 
For valid oceanographic retrievals, the v-pol brightness temperature should always be 
larger than the h-pol. Hence, to remove obviously bad observations, data were flagged if 
the difference between the h-pol and v-pol brightness temperature for the 18-36 GHz 
channels was negative. This check was only performed for the 18-36 GHz channels since 
they are the channels for which the atmospheric contribution is largest. Furthermore, to 
exclude low-quality brightness temperature observations, the spatial standard deviation of 
the 23 V and H and the 36 V and H brightness temperatures were calculated in the 21 by 
21 pixel extract surrounding each pixel. Different approaches were used for AMSR-E and 
AMSR2 data. For AMSR-E matchups, data were flagged as unusable if the standard 
deviation of the above-mentioned channels exceeded 55, 35, 25 and 25 K, respectively. 
Due to differences in the distribution of brightness temperatures, the same limits were not 
applicable for AMSR2 matchups. Thus, to perform a comparable flagging for AMSR2, the 
1% of AMSR2 matchups with the highest standard deviation were considered to be of low 
quality and flagged accordingly. 
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The quality of the in situ and auxiliary data was also considered. Matchups with an in situ 
quality control flag indicating bad data were flagged as erroneous. Moreover, matchups 
with an in situ or NWP SST less than -2°C or greater than 34°C were excluded. In the same 
way, matchups with NWP or CCMP wind speeds greater than 20 m s-1 were also flagged. 
Together, the above-mentioned checks on the satellite, in situ and auxiliary data constitute 
quality control checks (denoted “Quality control checks” in Table 1) which ensure that the 
input data are of sufficient quality. 

Further checks are necessary as both atmospheric and surface effects can contaminate the 
signal and lead to erroneous retrievals. Sea ice and land affect the retrieval due to antenna 
side-lobe contamination. The satellite land/ocean flag and NWP sea ice fraction was used 
to flag matchups. If any land or sea ice was detected within the 21x21 pixel extract 
surrounding each pixel, the matchup was flagged. Diurnal warming effects were accounted 
for by flagging daytime AMSR-E matchups with wind speeds less than 4 m s-1. For AMSR2, 
the wind speed limit was increased to 6 m s-1 since diurnal warming effects were not 
completely removed when using the lower limit of 4 m s-1. Furthermore, precipitating clouds 
compromise the PMW retrievals and these effects must therefore be excluded. To account 
for contamination due to rain, data were flagged if the 18 GHz v-pol brightness temperature 
exceeded 240 K. Sun glitter contamination was accounted for by flagging data with a sun 
glint angle of less than 25 degrees. To avoid contamination due to RFI, two different 
approaches were used. For AMSR-E, ground-based and space-based RFI was masked out 
using Table 2 in (Gentemann and Hilburn, 2015) together with observation location and 
geostationary reflection longitude and latitude, respectively. AMSR2 has an additional 
channel at 7.3 GHz, which is specifically designed for detection of RFI. Both the 6.9 GHz 
and 7.3 GHz channels on AMSR2 suffer from RFI contamination, however, the 
geographical distributions are different, making it possible to use the two channels for RFI 
detection. Based on this, the absolute difference between the 6.9 and 7.3 GHz channels 
(both polarizations) was used to mask out RFI if the difference > 3 K. However, the latter of 
these methods does not completely mask out all RFI and a large signal could still be seen 
around Ascension Island. To be sure to mask out all RFI-contaminated data, all matchups 
in the area around Ascension Island (24°W to 6°W longitude and 18°S to 2°S latitude) were 
masked out for the AMSR2 matchups. Additional steps to further remove RFI-contaminated 
data will be introduced in Section 3.3.4. As a last quality control, obviously erroneous in situ 
SSTs were excluded using a 3-σ filter on the NWP and in situ SST difference. 

Finally, to obtain a more latitudinally representative dataset, the number of matchups per 
degree of latitude was restricted. Individual limits were imposed for the different years due 
to the widely varying number of matchups amongst years. In addition, a limit on the number 
of matchups per year was imposed. Since each year consists of very different numbers of 
matchups, a limit of 1 million matchups per year was imposed to get a more temporally 
representative dataset. However, if the number of filtered matchups was less than 700,000 
for a year, the even-out-data-by-year restriction was set to 70% of the total number of good 
matchups to ensure that data from years with fewer matchups are represented in all 
subsets (see Figure 1). The summary statistics for the different filtering processes are listed 
in Table 2. 
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Table 2: The number of matchups after filtering and the percentage of matchups the 
filtering step removes. The statistics are shown for both the AMSR-E and AMSR2 
datasets. 
1 the percentage of matchups removed is relative to all MMD matchups (No filter). 
2 the percentage of matchups removed is relative to the number of matchups which passed 
the ”Quality control checks” step. 
3 the percentage of matchups removed is relative to the number of matchups that passed 
the “All above checks” step. 

 

 AMSR-E AMSR2 

Filter N % removed N % removed 

No filter 40,480,306 - 27,796,093 - 

Quality control checks 1 34,340,715 15.2 25,658,424 7.7 

Rain 2 34,088,030 0.7 25,114,008 2.1 

Sun glint 2 32,269,911 6.0 24,286,797 5.3 

RFI 2 31,832,433 7.3 25,295,077 1.4 

Land 2 31,285,364 8.9 22,790,471 11.2 

Sea ice 2 30,852,455 10.2 22,627,223 11.8 

Diurnal warming 2 30,034,321 12.5 18,975,850 26.0 

All above checks 1 22,319,646 44.9 14,821,726 47.5 

3-σ filter on NWP and in 
situ SST diff. 3 21,972,506 1.6 14,588,260 1.6 

All checks 1 21,972,506 45.7 14,588,260 47,5 

Even-out-by-latitude 1 16,322,299 22.9 9,880,565 32.3 

Even-out-by-year 1 8,460,292 50.0 4,918,012 50.2 

Total 1 8,460,292 79.1 4,918,012 82.3 

To obtain an independent validation, the MMDs are divided into 7 subsets each (see Figure 1); 

• WS1_TRAIN: training subset for step 1 of the wind speed retrieval algorithm; 

• WS1_TEST: validation subset for step 1 of the wind speed retrieval algorithm; 

• WS2_TRAIN: training subset for step 2 of the wind speed retrieval algorithm; 

• WS2_TEST/SST_TRAIN: validation subset for step 2 of the wind speed retrieval 
algorithm, also used as training subset for the SST retrieval algorithm; 

• SST_TEST: validation subset for the SST retrieval algorithm; 

• UNCERT_TRAIN: training subset for the SST uncertainty retrieval algorithm; and 

• UNCERT_TEST: validation subset for the SST uncertainty retrieval algorithm. 
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Figure 1 shows the filtering procedures and subsequent subset division of the AMSR-E and 
AMSR2 MMDs. The “Filtered MMD”-box represents the filtered MMDs where erroneous 
data have been excluded and the subsets have been made latitudinally and temporally 
representative. As shown in Figure 1, the filtered MMD is then divided into two subsets, 
WS1_TRAIN and WS1_TEST, through random selection of matchups. One sixth of the 
filtered MMD matchups are used for WS1_TRAIN and the rest for WS1_TEST. Following 
this, the WS1_TEST subset is divided into two subsets; WS2_TRAIN (1/4 of WS1_TEST) 
and WS2_TEST/SST_TRAIN (3/4 of WS1_TEST), also through random selection of 
matchups. The fifth subset, SST_TEST, is constructed from the matchups removed by the 
application of the evening-out filters on the good data. Imposing a restriction on the number 
of matchups per degree of latitude for these data gives us the SST_TEST subset, which is 
used as a validation subset for the retrieved SSTs. The total number of matchups in the 
AMSR-E and AMSR2 SST_TEST subsets is 9,916,606 and 6,279,359, respectively. 
Finally, the SST_TEST subset is divided, through random selection of matchups, into two 
subsets for training and validation of the SST uncertainty retrieval; UNCERT_TRAIN (9/10 
of SST_TEST) and UNCERT_TEST (1/10 of SST_TEST). 
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Figure 1: Schematic of the subset division for the AMSR-E and AMSR2 MMDs. The 
numbers denote the total number of matchups in each AMSR-E/AMSR2 subset. 

The geographical distribution of matchups per square kilometre and the latitudinal distribution of 
drifter matchups for the combined AMSR-E and AMSR2 SST_TEST subsets are shown in Figure 2. 
The number of matchups per year is shown in Figure 3. Figure 2 demonstrates the spatial 
distribution of the in situ matchup database, with the North Atlantic Ocean having the largest 
number of collocations and the Indian Ocean the least.  The annual distribution of matchups (Figure 
3) shows few matchups in 2002 and another decrease in 2012.  In 2002, AMSR-E data does not 
start until June, and the instrument failed in October 2011. In 2012, AMSR2 data was first available 
from July. 
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3/4 of WS1_TEST. 

 

Even-out-data-by-latitude 

Even-out-data-by-year 
Even-out-data-by-latitude 

Filtered MMD 
8,460,292/4,918,012 

UNCERT_TEST: 

Validation subset for SST 
uncertainty retrieval algorithm. 

1/10 of SST_TEST. 

 

UNCERT_TRAIN: 

Training subset for SST 
uncertainty retrieval algorithm. 

9/10 of SST_TEST. 

8 925 894/5 651 352 



 
SST CCI Phase-II SST_CCI-WP90-DMI-201 
Passive Microwave SST Production and Impact Assessment Issue 1 

  Page 11 

 

Figure 2: a) Geographical distribution of drifter matchups per square kilometre; and 
b) latitudinal distribution of drifter matchups for the combined AMSR-E and AMSR2 
SST_TEST subsets. The geographical statistics have been gridded using a grid size 
of 2 degrees, with a minimum of 50 matchups per grid cell. 

 

 

Figure 3: Number of drifter matchups per year for the AMSR-E and AMSR2 
SST_TEST subsets. 
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2.3 Algorithm development 

The regression retrieval algorithms described here have been developed within the ESA-
CCI SST project to retrieve subskin SST from AMSR-E and AMSR2 and to generate a 
climate data record of PMW SST for the period June 2002 to October 2017. Two retrieval 
algorithms have been developed; one for wind speed (WS) and one for SST. A two-step 
multiple linear regression model is used to retrieve WS given satellite brightness 
temperatures and NWP fields. In the first stage, a global algorithm is used, whereas in the 
second stage, specialized algorithms, here for restricted wind speed intervals, are used. 
The SST retrieval algorithm described here is a two-step multiple linear regression model 
with specialized retrieval algorithms. In the first stage, the algorithm is trained to perform 
well over restricted latitude intervals for ascending and descending orbits, respectively, 
whereas in the second stage, the applied algorithms are specialized for restricted SST and 
WS intervals, using the first stage retrievals. The specialized algorithms are used to 
address the non-linearity problem arising from the non-linear relationship between the 
geophysical parameters in question (SST or WS) and brightness temperature. 

 

2.3.1 WS retrieval algorithm 

A global regression model is used in the first stage of the wind speed retrieval process to 
retrieve an initial estimate of wind speed (WSa). The definition of “global” is here taken to 
mean that only one set of regression coefficients is used for all wind speeds. The wind 
speed retrieval algorithm is inspired by the National Oceanic and Atmospheric 
Administration (NOAA) AMSR2 wind speed retrieval algorithm (Chang et al., 2015) and 
expresses wind speed in terms of brightness temperature (TB) and Earth incidence angle 
(𝜃𝐸𝐼𝐴) 

 
 

𝑊𝑆𝑎 = 𝑎0 + �(𝑎1𝑖𝑡𝑖 + 𝑎2𝑖𝑡𝑖2) + 𝑎3𝜃
10

𝑖=1

 (1) 

 
where 
 𝑡𝑖 = 𝑇𝐵𝑖 − 150  for all channels except the 23.6 GHz channels (2) 

 𝑡𝑖 = ln(290− 𝑇𝐵𝑖) for the 23.6 GHz channels (3) 

 𝜃 = 𝜃𝐸𝐼𝐴 − 55 (4) 

 

The coefficients a0, a1, a2 and a3 are regression coefficients, denoted Bglobal, the summation 
index i represents the summation over 10 brightness temperature channels; 6.9, 10.7, 18.7, 
23.6 and 36.5 GHz (vertical and horizontal polarization), and TBi denotes the brightness 
temperature for the ith channel. The regression coefficients are obtained through training 
on the WS_TRAIN1 subset, using the least-squares method. 

The relationship between brightness temperature and wind speed is non-linear and the 
first-stage retrieval is not able to represent these non-linearities. Hence, a second-stage 
retrieval needs to be performed where these non-linearities are taken into account. This is 
done by using specialized wind speed retrieval algorithms. With “specialized” we mean that 
the algorithm is trained to perform well over specialized domains, in this case over fixed 
wind speed reference intervals. Hence, one set of regression coefficients, BWS, is obtained 
for each reference interval, using the least-squares method. The coefficients are derived 
through training on subsets of the WS2_TRAIN subset, consisting of a minimum of 50 
matchups each. To avoid discontinuities in the retrievals, the wind speed bins were defined 
with a 50% overlap during training. 
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The specialized wind speed algorithms are defined for fixed wind speeds in the interval 0 to 
20 m s-1, with a bin size of 1 m s-1. This gives a total of 20 specialized wind speed 
algorithms. When performing the retrieval, regression coefficients are selected from the 
correct wind speed bin based on the retrieved WS from the first-stage retrieval (WSa). Like 
the first-stage retrieval, brightness temperature and incidence angle are used to retrieve the 
second-stage wind speed 

 
 

𝑊𝑆𝑟𝑘 = 𝑏0𝑘 + �(𝑏1𝑖𝑘𝑡𝑖 + 𝑏2𝑖𝑘𝑡𝑖2) + 𝑏3𝑘𝜃
10

𝑖=1

 (5) 

 

where k denotes the reference wind speed bin, ranging from 0 to 20 m s-1, and the 
coefficients b0, b1, b2 and b3 are regression coefficients, denoted BWS. The final retrieved 
wind speed, WSr, is obtained through linear interpolation between the wind speed obtained 
for the current WS bin and for the closest neighbouring WS bin. 

 

2.3.2 SST retrieval algorithm 

In the first stage of the SST retrieval algorithm, a preliminary estimate of SST (SSTa) is 
retrieved using a regression model with specialized latitude algorithms for ascending and 
descending orbits. This means that the algorithm is trained to perform well over fixed 
reference latitudes and for ascending and descending orbit, respectively. One set of 
regression coefficients, BLAT,ORB, is therefore obtained for each latitude and for ascending 
and descending orbits, respectively. The specialized algorithms are derived for reference 
latitudes in the interval -90 to 90 degrees, with a bin size of 2 degrees, and descending (0) 
or ascending (1) orbit. This gives a total of 182 specialized latitude and orbit algorithms. As 
with the specialized WS algorithms, the latitude bins were defined with a 50% overlap 
during training to avoid discontinuities. For the retrieval process, regression coefficients are 
selected from the correct latitude and orbit bin using satellite latitude (ϕLAT) and orbit. The 
SST retrieval algorithm is inspired by the Remote Sensing System (RSS) AMSR-E SST 
retrieval algorithm (Wentz and Meissner, 2007).  SST is expressed in terms of brightness 
temperature (TB), Earth incidence angle (𝜃𝐸𝐼𝐴), wind speed (WSr) and the relative angle 
between satellite azimuth angle and wind direction (𝜑𝑅𝐸𝐿) 

 
 

𝑆𝑆𝑇𝑎𝑙𝑚 = 𝑐0𝑙𝑚 + �(𝑐1𝑖𝑙𝑚𝑡𝑖 + 𝑐2𝑖𝑙𝑚𝑡𝑖2) + 𝑐3𝑙𝑚𝜃 + 𝑐4𝑙𝑚𝑊𝑆𝑟

12

𝑖=1

 (6) 

 
+��𝑐5𝑗𝑙𝑚 cos 𝑗𝜑𝑅𝐸𝐿 + 𝑐6𝑗𝑙𝑚 sin 𝑗𝜑𝑅𝐸𝐿�

2

𝑗=1

  

 
where 
 𝑡𝑖 = 𝑇𝐵𝑖 − 150  for all channels except the 23.6 GHz channels (7) 

 𝑡𝑖 = −ln(290− 𝑇𝐵𝑖) for the 23.6 GHz channels (8) 

  𝜃 = 𝜃𝐸𝐼𝐴 − 55 (9) 

 

and l denotes the reference latitude, ranging from -90 to 90 degrees, and m denotes the 
reference orbit (0 for descending and 1 for ascending orbit). The coefficients c0, c1, c2, c3, 
c4, c5 and c6 are regression coefficients, denoted BLAT,ORB, the summation index i 
represents the summation over 12 brightness temperature channels; 6.9, 10.7, 18.7, 23.6, 
36.5 and 89.0 GHz (dual polarization), and TBi denotes the brightness temperature for the 
ith channel. The regression coefficients are obtained through training on subsets of the 
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SST_TRAIN subset, consisting of a minimum of 100 matchups each. The least-squares 
method is used to derive the coefficients. To avoid discontinuities in the retrieval, the final 
preliminary retrieved SST is obtained through linear interpolation of the SST retrieved for 
the current latitude and orbit bin and the SST retrieved using the closest latitude and orbit 
bin. 

Wind speed influences the sea surface roughness, which affects the emissivity and 
therefore also the brightness temperature. To account for this non-linear dependence and 
the non-linear dependence of brightness temperature on SST, a second-stage SST 
retrieval is performed. Here, a regression model with specialized SST and WS algorithms is 
used to retrieve SST. The specialized algorithms are defined for reference SSTs in the 
interval -2 to 34°C, with a bin size of 2°C, and reference wind speeds in the interval 0 to 20 
m s-1, with a bin size of 2 m s-1. This gives a total of 209 specialized SST and WS 
algorithms.  The SST and WS bins were defined with a 1 m s-1 and 1°C overlap, 
respectively, during training to avoid discontinuities in the retrieval.  When performing the 
retrieval, the correct regression coefficients are found based on retrieved wind speed (WSr) 
and first-stage retrieved SST (SSTa). The second-stage SST retrieval algorithm is 
formulated in the same way as the first-stage retrieval. Brightness temperature, Earth 
incidence angle, retrieved wind speed and the relative angle between satellite azimuth 
angle and wind direction are used to retrieve SST 

 
 

𝑆𝑆𝑇𝑟𝑛𝑝 = 𝑑0𝑛𝑝 + ��𝑑1𝑖𝑛𝑝𝑡𝑖 + 𝑑2𝑖𝑛𝑝𝑡𝑖2� + 𝑑3𝑛𝑝𝜃 + 𝑑4𝑛𝑝𝑊𝑆𝑟

12

𝑖=1

 (10) 

 
+��𝑑5𝑗𝑛𝑝 cos 𝑗𝜑𝑅𝐸𝐿 + 𝑑6𝑗𝑛𝑝 sin 𝑗𝜑𝑅𝐸𝐿�

2

𝑗=1

  

 

where n denotes the reference SST, ranging from -2 to 34°C, and p denotes the reference 
wind speed, ranging from 0 to 20 m s-1. The regression coefficients d0, d1, d2, d3, d4, d5 and 
d6 are referred to as BSST,WS. The specialized algorithms are trained on subsets of the 
SST_TRAIN subset, consisting of a minimum of 100 matchups each, and the coefficients 
are obtained using the least-squares method. The final retrieved SST, SSTr, is obtained 
through bi-linear interpolation between the SST obtained for the current SST and WS bin 
and for the three closest neighbouring bins. 

 

2.3.3 SST uncertainty retrieval algorithm 

An important part of a climate data record is the inclusion and validation of realistic 
uncertainties. These facilitate the use of the SSTs within ocean and atmosphere models. In 
this study, we have chosen to follow the approach within the ESA-CCI SST project (Rayner 
et al., 2015), where the total uncertainty is a combination of three uncertainty components, 
each with different characteristics. The total uncertainty for the retrieved SST, εSSTr, is thus 
divided into three independent components; a random component (εrandom) a local 
systematic component (εlocal) and a global systematic component (εglobal). The total 
uncertainty is given by 

 
 𝜀𝑆𝑆𝑇𝑟 = �𝜀𝑟𝑎𝑛𝑑𝑜𝑚2 + 𝜀𝑙𝑜𝑐𝑎𝑙2 + 𝜀𝑔𝑙𝑜𝑏𝑎𝑙2  (11) 

These three components have been chosen due to their different behaviour when 
aggregating the observations. When aggregating in time or space, it is assumed that εrandom 
will reduce as 1/√𝑁, where N is the number of observations. Similarly, εlocal will reduce as 
1/√𝑁∗ where N* is the effective number of observations, taking into account a synoptic 
timescale of 2-5 days and spatial distances of 500-1,000 km.  The εglobal component is 
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assumed to be systematic and not to be reduced, even for large spatial and temporal 
averaging scales. 

Both the local systematic uncertainty component and the random uncertainty component 
are obtained through the use of a global regression model. The global systematic 
uncertainty component, on the other hand, is assumed to be small and therefore set to 
zero. The retrieval algorithms for the local systematic and random uncertainty components 
express the uncertainty in terms of retrieved SST (SSTr), retrieved wind speed (WSr), 
latitude (ϕLAT), and solar zenith angle (θSZA) 

 
 𝜀𝑆𝑆𝑇 = 𝑒0 + 𝑒1𝑆𝑆𝑇𝑟 + 𝑒2𝑆𝑆𝑇𝑟2 + 𝑒3𝑊𝑆𝑟 + 𝑒4𝑊𝑆𝑟2 + 𝑒5𝜃𝑆𝑍𝐴 + 𝑒6𝜃𝑆𝑍𝐴2  (12) 

 
+��𝑒7𝑝 cos �

𝜙𝐿𝐴𝑇
𝑝 �+ 𝑒8𝑝 sin �

𝜙𝐿𝐴𝑇
𝑝 ��

4

𝑝=1

  

where the coefficients e0, e1, e2, e3, e4, e5, e6, e7 and e8 are regression coefficients, 
determined through training on the UNCERT_TRAIN subset. Two different sets of 
regression coefficients are obtained; one for the local systematic uncertainty component 
(Blocal) and one for the random uncertainty component (Brnd). 

The uncorrelated uncertainty is used to represent the uncertainty due to radiometric noise, 
which is represented by the noise equivalent differential temperature (NEdT). To estimate 
the uncertainty due to uncorrelated effects, an NEdT of 0.1 K (Wentz and Meissner, 2000) 
was propagated through the retrieval algorithm and a new set of SSTs was generated 
(SSTr,rnd). Hereafter, a pre-binning was performed using the UNCERT_TRAIN subset, 
where data was binned for retrieved SST, retrieved wind speed, latitude, and solar zenith 
angle. The intervals and bin sizes used for the pre-binning are shown in Table 3. For each 
bin, if it consisted of a minimum of 50 matchups, two standard deviations were calculated; 

• σ∆SSTr: the standard deviation of the SSTr minus in situ SST difference; and 

• σ∆SSTr,rnd: the standard deviation of the SSTr minus SSTr,rnd difference. 

The first standard deviation, σ∆SSTr, is used to represent local effects on the total uncertainty 
and includes drifter uncertainty and sampling effects, whereas the second standard 
deviation, σ∆SSTr,rnd, is used to represent random and uncorrelated effects. To obtain 
regression coefficients for the random uncertainty component, the retrieval algorithm was 
trained against σ∆SSTr,rnd. For the local systematic uncertainty component, the retrieval 
algorithm was trained against the part of the uncertainty attributed only to local variations, 
σlocal. Hence both sampling effects and drifter uncertainty needed to be removed from 
σ∆SSTr, in order to only get the local variations. The drifter uncertainty was set to 0.2 K 
whereas the sampling effect was calculated as a function of latitude. The sampling effect in 
this context was assumed to be primarily spatial (Høyer et al., 2012) and has been 
estimated by calculating the pixel-to-footprint variability for one year of GHRSST Level 4 
DMI_OI Global Foundation Sea Surface Temperature Analysis (DMI, 2007). 

 

Table 3: Pre-binning intervals and bin sizes for the uncertainty retrieval training 
dataset, UNCERT_TRAIN. 

Variable Bin size Min Max 

Retrieved SST 2°C -1°C 33°C 

Retrieved WS 2 m s-1 1 m s-1 19 m s-1 

Latitude 10° -85° 85° 

Solar zenith angle 15° 7.5° 172.5° 
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2.3.4 Improved RFI mask 

Radio Frequency Interference (RFI) is a rapidly increasing problem for geophysical SST 
and WS retrievals using 6.9, 10.7 and 18.7 GHz. While these are protected frequencies for 
scientific use (International Telecommunication Union, 2012), the bandwidth of these 
channels exceed the protected bands. RFI can be divided into three categories (in order of 
occurrence); space-based ocean-reflected, satellite-to-satellite interference and ground-
based RFI. The main source of surface reflected space-based RFI is media broadcasts (TV 
and radio) from geostationary satellites and satellite downlinks, which affect mostly the 6.9, 
10.7 and 18.7 GHz channels. Satellite-to-satellite RFI is a growing problem with an unclear 
solution. Ground-based RFI is related to land-based microwave link communication 
systems on oil rigs, near cities, and in regions with military activities and mostly affects the 
6.9 GHz channel. 

Gentemann and Hilburn (2015) developed an RFI mask which uses observation location 
and geostationary reflection latitude and longitude to check for RFI contamination. This 
method was used as an initial RFI mask to screen for potentially contaminated RFI 
matchups in the data filtering process (Section 3.2.5.2). Here we present an alternative RFI 
filtering method, based on two additional SST retrieval algorithms. The two new algorithms 
are formulated exactly as the baseline algorithm with the exception that one excludes the 
10 GHz channels (-10GHz algorithm) and the other excludes the 18 GHz channels (-18GHz 
algorithm). As for the baseline retrieval algorithm, the two-step regression model is used to 
retrieve SST for the -10GHz and -18GHz algorithms. Even though the 6.9 GHz channels 
are the ones that are most affected by RFI, we do not exclude them because this could 
introduce a strong SST dependency in the filter due to the large temperature variation in the 
sensitivity of the 10 GHz channel (Gentemann et al., 2010). Figure 4 shows the 
performance of the baseline retrieved AMSR-E PMW SST as a function of the difference 
between the AMSR-E PMW SST retrieved using the -18GHz algorithm and the baseline 
retrieved AMSR-E PMW SST. 
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Figure 4: Baseline retrieved AMSR-E PMW SST minus in situ SST as a function of -
18GHz retrieved AMSR-E PMW SST minus baseline retrieved AMSR-E PMW SST. Top 
panel shows the mean (solid) and standard deviation (dashed) of differences for 
each bin. The heat plot in the mid panel shows the distribution of matchups, and the 
bottom panel shows the number of matchups (blue) and the cumulative number of 
matchups (orange) in each bin. A minimum of 10 matchups per bin was used for the 
statistics calculation. 

 

The standard deviation of baseline retrieved PMW SST minus in situ SST increases as the 
difference between the -18GHz retrieved PMW SST and the baseline retrieved PMW SST 
grows, with the largest values found at the tails of the distribution. Furthermore, the 
magnitude of the mean also increases with increasing difference between the -18GHz 
retrieved PMW SST and the baseline retrieved PMW SST. The behaviour for the 
dependence of the SST difference against -10GHz retrieved PMW SST minus baseline 
retrieved PMW SST are similar and are therefore not shown. Similarly, the results for the 
AMSR2 retrievals resemble those for the AMSR-E retrievals and are therefore not included 
here. 
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Based on these results, a new RFI mask is proposed. The new mask uses a 3-σ filter to 
detect RFI and flag data if any of the following expressions is true 

 
 �(𝑆𝑆𝑇r,baseline − 𝑆𝑆𝑇r,-10GHz) − 𝜇-10GHz� > 3𝜎-10GHz (13) 

 �(𝑆𝑆𝑇r,baseline − 𝑆𝑆𝑇r,-18GHz) − 𝜇-18GHz� > 3𝜎-18GHz (14) 

 

where SSTr,-10GHz, SSTr,-18GHz and SSTr,baseline are the final retrieved SST using the -10GHz, -
18GHz and baseline algorithms, respectively. µ-10GHz and µ-18GHz denote the mean of the 
difference 𝑆𝑆𝑇r,-10GHz − 𝑆𝑆𝑇r,baseline and 𝑆𝑆𝑇r,-18GHz − 𝑆𝑆𝑇r,basesline, respectively, whereas σ-

10GHz and σ-18GHz denote the standard deviation of the corresponding differences. Hereafter, 
when referring to the baseline retrieved PMW SST we will drop the reference to the 
retrieval algorithm and simply write PMW SST. The mean and standard deviation of 
differences used for the proposed RFI mask are shown in Table 4. 

 

Table 4: Mean and standard deviation of differences for retrieved SSTs using the -
10GHz and -18GHz algorithm minus baseline retrieved SST for AMSR-E and AMSR2. 

Sensor µ-10GHz (K) µ-18GHz (K) σ-10GHz (K) σ-18GHz (K) 

AMSR-E 0.0024 0.0071 0.192 0.138 

AMSR2 -0.0087 0.0043 0.170 0.130 

 

Figure 5a) and b) show the geographical distribution of the gridded mean and standard 
deviation of the combined AMSR-E and AMSR2 PMW SST minus in situ SST without 
application of an RFI mask. The region with a strong negative bias and a high standard 
deviation over Western Europe is a well-known region with large RFI contamination, both 
from space-based and ground-based RFI sources. The effect of RFI in this region here 
results in colder PMW SSTs compared to in situ SSTs. Ascension Island is another well-
known region which is strongly influence by ground-based RFI, as is most evident in the 
increased standard deviation but also in the slightly negative mean. Yet another region 
which is well-known for being contaminated by RFI is the Mediterranean Sea, where the 
RFI contamination here results in warmer PMW SSTs compared to in situ SSTs. The 
application of the proposed RFI mask successfully removes RFI in all of the above-
mentioned regions, as is evident in Figure 5c) and d). For comparison, Table 4 shows the 
performance of the SST retrieval algorithm with and without application of the new RFI 
mask. Application the proposed RFI mask results in a decrease of the standard deviation of 
the PMW SST minus in situ SST difference by 0.02 and 0.03 K for AMSR-E and AMSR2, 
respectively, compared to without application of an RFI mask. Hereafter, the new RFI mask 
has been used instead of the initial mask. 
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Figure 5: Top panel shows the geographical distribution of a) mean and b) standard 
deviation of AMSR-E and AMSR2 PMW SST minus in situ SST without application of an RFI 
mask. Bottom panel shows the distribution of c) mean and d) standard deviation of the 
difference between the AMSR-E and AMSR2 PMW SST and in situ SST without RFI mask 
minus the SST difference with the proposed RFI mask. The statistics have been gridded 
using a grid size of 2 degrees, with a minimum of 50 matchups per grid cell. 

 
Table 5: Mean and standard deviation of PMW SST minus in situ SST, number of matchups 
removed by the RFI mask and the total number of matchups left in the drifter validation 
subset, SST_TEST, after all checks have been performed (see Section 3.2.5.2). Additional 
filtering was performed after application of the RFI mask to exclude obvious erroneous 
retrievals. Retrievals with a PMW SST outside the accepted range (-2 to 34°C) or with a PMW 
WS outside the accepted range (0 to 20 m s-1) were therefore excluded. 

Sensor RFI mask Mean (°C) Std (°C) No. of matchups 
removed by RFI filter 

No. of 
matchups 

AMSR-E 
No RFI mask -0.012 0.54 - 10,067,979 

3-σ filter -0.0099 0.52 154,344 9,916,606 

AMSR2 
No RFI mask 0.0027 0.54 - 6,384,638 

3-σ filter 0.0067 0.51 107,096 6,297,359 
 

2.4 Results 

The filtering steps described in Section 3.2.5.2 and the RFI mask described in Section 3.3.4 
only ensures that the input data to the retrieval algorithm is of sufficient quality. It is also 
important to ensure that the retrievals used in the validation are of sufficient quality and to 
flag erroneous output. Therefore, additional filtering was performed where PMW SST 
retrievals outside the accepted range (-2 to 34°C) and PMW WS retrievals outside the 
accepted range (0 to 20 m s-1) were flagged as erroneous. The results shown in this section 
include the filtering steps outlined in Section 3.2.5.2, but with the new RFI mask instead of 
the initial one, as well as the checks on the retrieval output as outlined above. For the 
generation of the climate data record, the PMW SST retrievals follow the GHRSST GDS 
2.0 data specification (GHRSST Science Team, 2010) for L2P and each retrieval has been 
assigned a quality level from 0 (no data) to 5 (best quality) to indicate the quality of the 
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individual retrievals. Quality levels are defined by producers relative to the characteristics of 
a given data stream. Table 6 shows the definition of the rules applied for different quality 
levels in this case. 

 

Table 6: Definition of quality levels and rules for assignment. 

Quality Level Definition Rules 

0 No data  

1 Bad data Quality controls and various  checks 
for atmospheric and surface effects 
(see Section 3.2.5.2) 

2 Worst-quality usable 
data 

• SST uncertainty ≥ 1 
• Proximity to sea ice 
• Proximity to land 

3 Low quality 0.5 < SST uncertainty < 1 

4 Acceptable quality 0.35 < SST uncertainty ≤ 0.5 

5 Best quality SST uncertainty ≤ 0.35 
 

The quality controls and various checks for surface and atmospheric effects referred to in 
the definition of quality level 1 are the same as the filtering procedures defined in Section 
3.2.5.2 (new RFI mask instead of initial mask), with few exceptions. The quality level 1 
check for the PMW SST CDR retrievals does not include a check for diurnal warming 
effects. On the other hand, it includes an additional check where the retrieved SST is 
compared to a background SST. If the retrieved SST deviates more than 10°C from the 
background, the retrieval is assigned quality level 1. Quality level 2 PMW SST retrievals in 
the CDR are assigned based on the total SST uncertainty and on an extended sea ice and 
land mask, which is based on the proximity of the retrieval to sea ice and land. Due to the 
construction of the MMD, the sea ice and land masking performed here does not fully 
correspond to the extended sea ice and land mask used in the generation of the CDR. 
Therefore, the filtering performed for the MMDs approximately corresponds to excluding 
quality level 1 and 2 data and only retaining quality level 3 to 5 data. 

The regression retrieval has been run for the AMSR-E and AMSR2 validation subsets 
(SST_TEST) defined in Section 3.2.5.2. The overall summary statistics of the PMW SSTs 
against drifter in situ SSTs for different quality levels are shown in Table 6. The AMSR-E 
quality level 3-5 PMW SSTs give a bias -0.01 K and standard deviation of 0.52 K when 
compared against in situ SSTs. By contrast, the quality level 4 and 5 AMSR-E retrievals 
give SSTs with a bias of -0.02 K and a standard deviation of 0.46 K. Comparing the AMSR2 
quality level 3-5 PMW SSTs against in situ SSTs gives a bias of 0.007 K and a standard 
deviation of 0.51 K. The mean and standard deviation of the AMSR2 quality level 4 and 5 
PMW SST retrievals are smaller, 0.002 K and 0.45 K, respectively. 

To obtain a completely independent validation, the retrieved SSTs were also validated 
against SSTs from Argo floats. The Argo floats are not as numerous as the drifters and 
therefore, the AMSR-E and AMSR2 Argo validation subsets only consist of 148,895 and 
154,715 matchups, respectively. The comparison of AMSR-E and AMSR2 quality level 4 
and 5 retrievals against Argo SSTs shows a slightly better performance than the 
comparison with drifters. The AMSR-E quality level 4 and 5 retrievals give a bias of -0.009 
K and a standard deviation of 0.44 K when compared against Argo floats. Similarly, 
comparing the AMSR2 quality level 4 and 5 PMW SSTs against Argo floats gives a bias of 
0.01 K and a standard deviation of 0.43 K. 
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Table 7: Performance of the SST retrieval algorithm for AMSR-E and AMSR2 drifter and Argo 
subsets. The table shows the mean and standard deviation of PMW SST minus in situ SST 
and number of matchups contributing to the statistics for different subsets. 

Sensor Quality 
level 

Mean 
Drifter (K) 

Std Drifter 
(K) 

No. of 
matchups 

Mean Argo 
(K) 

Std Argo 
(K) 

No. of 
matchups 

AMSR-E 3 0.02 0.64 2,763,087 0.007 0.62 39,939 

4 -0.01 0.51 4,399,894 -0.002 0.50 60,398 

5 -0.03 0.37 2,753,625 -0.02 0.36 48,558 

3-5 -0.01 0.52 9,916,606 -0.004 0.50 148,895 

4-5 -0.02 0.46 7,153,519 -0.009 0.44 108,956 

AMSR2 3 0.02 0.64 1,729,073 0.03 0.62 37,273 

4 0.006 0.52 2,549,348 0.02 0.51 57,343 

5 -0.003 0.35 2,000,938 0.004 0.34 60,089 

3-5 0.007 0.51 6,279,359 0.02 0.48 154,705 

4-5 0.002 0.45 4,550,286 0.01 0.43 117,432 
 

Figure 6 shows the geographical distribution of the gridded mean and standard deviation of 
the AMSR-E and AMSR2 PMW SST minus drifter in situ SST based on the combined 
AMSR-E and AMSR2 SST_TEST subsets, consisting of in total 16,195,965 drifter 
matchups. The distribution of the mean shows a positive bias for high latitudes, especially 
in the southern hemisphere. This has been confirmed to be linked to undetected sea ice. 
Furthermore, a warm bias is seen for the west coast of America and the east coast of Asia. 
A negative bias is seen for e.g. the Pacific warm pool area and the Arabian Sea. No clear 
latitudinal dependence can be discerned for the mean. However, for the geographical 
distribution of the standard deviation a latitudinal dependence is observed. Lower standard 
deviations are found at low latitudes and higher standard deviations at higher latitudes. 
Furthermore, higher standard deviation is observed in the dynamical ocean regions, such 
as the Kuroshio Current, the Gulf Stream Extension and the Agulhas Current. These are 
highly dynamical regions with large SST gradients over smaller scales.  When the large 
satellite footprint (43x75 km and 35x62 km for the AMSR-E and AMSR2 6.9 GHz 
resolution, respectively) is compared against in situ SST observations, which are point 
measurements, the SST difference is enhanced. Hence, the higher standard deviations in 
these regions are not a measure of the quality of the PMW SST retrievals but rather related 
to the large SST variability in these regions. 

 

 

Figure 6: The geographical distribution of a) mean and b) standard deviation of 
AMSR-E and AMSR2 PMW SST minus drifter in situ SST. The statistics have been 
gridded using a grid size of 2 degrees, with a minimum of 50 matchups per grid cell. 
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The performance of the PMW SST against drifter in situ SST as a function of SST, wind 
speed and latitude has been investigated (Figure 7 - Figure 9). A dependence can be seen 
for both cold and warm SSTs. The warm bias for cold SST (SSTs < 0°C) was investigated 
and found to be related to sea ice contamination. The reason for the cold bias for warm 
SST (SST > 29°C) is not yet understood. The standard deviation, on the other hand, 
decreases with warmer SST. Wind speed affects the sea surface roughness, which impacts 
the emissivity of the ocean and therefore also the brightness temperature in the retrievals. 
The dependence of the retrieved SST on wind speed therefore reflects the dependence on 
sea surface roughness. The binned statistics of the performance against wind speed shows 
a cold bias for wind speeds in the range 5-8 m s-1 and otherwise a small warm bias for both 
high and low wind speeds. The standard deviation is lowest for low wind speeds and 
increases for increasing wind speeds. As was evident in the geographical distributions of 
the gridded statistics (Figure 6) a latitudinal dependence is seen for the SST performance 
against in situ SSTs. Lower standard deviation is found at lower latitudes and higher 
standard deviation is found for higher latitudes. A cold bias is seen for matchups located 
between 15°S and the equator, which corresponds to the cold bias seen for the Pacific 
warm pool area. The negative bias seen for matchups centered around 60°N corresponds 
to the cold bias seen just south of Iceland, in the North Atlantic Ocean. Furthermore, a 
warm bias is seen for matchups at the higher latitudes. This has been confirmed to be an 
effect of sea ice contamination. 

 

Figure 7: AMSR-E and AMSR2 PMW SST minus drifter in situ SST as a function of 
average SST ((PMW SST + in situ SST)/2). Top panel shows the mean (solid) and 
standard deviation (dashed) of differences for each bin. The heat plot in the mid 
panel shows the distribution of matchups, and the bottom panel shows the number 
of matchups (blue) and the cumulative number of matchups (orange) in each bin. A 
minimum of 50 matchups per bin was used for the statistics calculation. 
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Figure 8: AMSR-E and AMSR2 PMW SST minus drifter in situ SST as a function of 
average WS ((PMW WS + CCMP WS)/2). Top panel shows the mean (solid) and 
standard deviation (dashed) of differences for each bin. The heat plot in the mid 
panel shows the distribution of matchups, and the bottom panel shows the number 
of matchups (blue) and the cumulative number of matchups (orange) in each bin. A 
minimum of 50 matchups per bin was used for the statistics calculation. 
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Figure 9: AMSR-E and AMSR2 PMW SST minus drifter in situ SST as a function of 
latitude. Top panel shows the mean (solid) and standard deviation (dashed) of 
differences for each bin. The heat plot in the mid panel shows the distribution of 
matchups, and the bottom panel shows the number of matchups (blue) and the 
cumulative number of matchups (orange) in each bin. A minimum of 50 matchups 
per bin was used for the statistics calculation. 

 

2.4.1 Sensitivity 

The sensitivity of the retrieved SST with respect to changes in true sea surface temperature 
was investigated (Merchant et al., 2009). A subset of AMSR-E versus drifter matchups for 
the year 2010, consisting of 4,642,710 good drifter matchups, was used to generate two 
sets of simulated brightness temperatures. The simulated brightness temperatures were 
generated using an updated version of the forward model developed by Wentz and 
Meissner (2000), as described in Nielsen-Englyst et al. (2018). Both sets use WS, TCLW 
and TCWV input from NWP and SST input from drifting buoys. The first set was simulated 
with in situ SST plus 1°C, while the second set of brightness temperatures was simulated 
with in situ SST minus 1°C, with NWP input held constant for both sets. The resulting 
brightness temperatures were subsequently propagated through the regression retrieval 
algorithm to derive the corresponding SST-1 and SST+1 estimates. The sensitivity was 
then calculated based on the retrieved SSTs and the overall mean sensitivity was 
estimated to 0.90. 

The geographical distribution of sensitivity is shown in Figure 10. The sensitivity is mostly 
larger than 0.85 but there are areas with lower sensitivity, such as the Pacific warm pool 
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area and the Arabian Sea, with minimum sensitivities just below 0.5. The Pacific warm pool 
area is characterized by high TCWV content, whereas the Arabian Sea is a relatively dry 
area in comparison. There are also areas of relatively lower sensitivity, such as south of 
Greenland and in a belt around Antarctica. These regions are characterized by high wind 
speeds, persistent cloud cover and rain. The dependence of the sensitivity on TCWV, 
TCLW and WS was investigated (not shown). A small dependence for very high TCWV was 
found but nothing for TCLW or WS. The geographical distribution of sensitivity for the initial 
estimate of SST (i.e. the latitude and ascending/descending retrieval), was also 
investigated to see if an explanation for the low sensitivity could be found. In addition, a 
global regression model, using the same regression algorithm, but with only one set of 
regression coefficients for all data (i.e. without any binning), was used to estimate the 
sensitivity. For the latitude and ascending/descending retrieval, lower sensitivities were 
found in a narrow band just north of the Equator, as well as for high latitudes (not shown). 
The global model exhibited highest sensitivities for low latitudes, with lower sensitivities for 
lower latitudes (not shown). Based on this, we reason that the low sensitivities seen for the 
two-stage retrieval algorithm are primarily an artefact of the binning performed in the 
retrieval. The binning performed in both the first-stage and second-stage retrievals might 
result in bins with very small SST variability. For these bins, e.g. wind speed and water 
vapour might vary more and thus the regression algorithm will instead correct for those 
contributions. Hence, the sensitivity of the algorithm to changes in true SST will be lower. 

 

Figure 10: The geographical distribution of sensitivity with respect to changes in SST 
for an AMSR-E subset consisting of matchups from year 2010. The statistics have 
been gridded using a grid size of 2 degrees, with a minimum of 50 matchups per grid 
cell. 

 

2.4.2 SST uncertainty 

Validation of the derived uncertainty is essential for the usefulness of the uncertainty 
estimate. Here, the satellite SST retrievals versus drifter in situ observations have been 
used for validating the total uncertainty estimates. Only independent drifter matchups have 
been used for the validation. Figure 11 shows the observed AMSR-E and AMSR2 PMW 
SST uncertainty against drifters versus the modelled uncertainty, i.e. the estimated PMW 
SST uncertainty (see Section 3.3.3). The ideal uncertainty is given by the dashed lines, 
which on top of satellite SST uncertainty, also includes the drifter in situ uncertainty and 
sampling effects. The drifter uncertainty is estimated to 0.2 K whereas the sampling effect 
is defined as a latitude dependent function. As shown in Høyer et al. (2012), the sampling 
effect is primarily spatial, with only a small temporal component. Based on this, the 
sampling effect has been estimated using the pixel-to-footprint variability for one year of 
GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (DMI, 
2007). The mean retrieved AMSR-E and AMSR2 SST uncertainty is estimated to 0.42 K 
and 0.41 K, respectively. The validation results for the observed satellite SST uncertainties 
show good agreement with the retrieved uncertainties (see Figure 11). 
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Figure 11: AMSR-E and AMSR2 PMW SST uncertainty validation against drifter in situ 
SST. The top panel shows the observed PMW SST minus drifter in situ SST 
uncertainty versus the modelled uncertainty, i.e. the retrieved PMW SST uncertainty. 
The dashed lines indicate the ideal uncertainty, in which drifter SST uncertainty and 
sampling errors have been included. The red asterisks denote the mean bias and the 
solid blue lines mark one standard deviation of the PMW SST minus drifter in situ 
SST difference for each 0.02 K bin. The bottom panel shows the number of matchups 
(blue) and the cumulative percentage of matchups (red) per bin. 

 

2.4.3 Time consistency 

The temporal stability in a climate data record is essential for later use and analysis. As the 
algorithms for the two satellite datasets have been derived using the same reference in situ 
dataset (drifting buoys), we expect that there are no large inconsistencies between the two 
datasets. Figure 12 shows the seasonal averaged independent validation statistics. It is 
clear from the figure that the performance of the two datasets is very similar. One excursion 
is the beginning of the AMSR2 period, where we see a cold bias larger than 0.1 degrees. 
The reason for this is not clear to us. RFI and geographical sampling effects were 
investigated but not found to be responsible for this deviation. 
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Figure 12: AMSR-E and AMSR2 quality level 4 and 5 PMW SST minus drifter in situ 
SST as a function of time (season). Top panel shows the mean (solid) and standard 
deviation (dashed) of differences for each bin. The heat plot in the mid panel shows 
the distribution of matchups, and the bottom panel shows the number of matchups 
(blue) and the cumulative number of matchups (orange) in each bin. A minimum of 
50 matchups per bin was used for the statistics calculation. 

2.5 Discussion 

In the retrieval presented above, we train and test our wind speeds against the CCMP 
winds that are based upon observations from passive and active Microwaves (see e.g. 
Atlas et al., 2011). This implies that information from the AMSR-E and AMSR2 are already 
included in the CCMP and that it cannot be regarded as a truly independent wind estimate. 
However, since the CCMP also includes a lot of information from other sensors, such as in 
situ observations and models, we decided to use this product for the algorithm validation, 
as it gave significantly better SST results, when we used the CCMP winds than using the 
ERA Interim wind speeds. 

The global SST validation results with a standard deviation of 0.46 and a bias of -0.02 for 
quality level 4 and 5 retrievals are comparable to or even better than previous validations of 
AMSR-E PMW SST retrievals (Gentemann, 2014; O’Carroll et al., 2008). Validation results 
for quality level 4 and 5 AMSR2 retrievals give SSTs with a bias of 0.002 K and a standard 
deviation of 0.45 K. Gentemann and Hilburn (2015) reported a standard deviation of 0.55 K 
and a bias of -0.02 K for validation of AMSR2 against in situ buoy measurements for the 
same period (2012-2016). We have also derived an uncertainty for each PMW SST 
retrieval and the uncertainty validation results against in situ measurements indicate a good 
agreement, with an uncertainty of 0.42 K and 0.41 K for AMSR-E and AMSR2 PMW 
retrievals, respectively. The modelled uncertainties, including the in situ uncertainty and 
sampling effects are estimated to 0.45 K and 0.44 K for AMSR-E and AMSR2 quality level 
4 and 5 retrievals, respectively. 
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The performance of the SST retrieval algorithm shows a latitudinal dependence in standard 
deviation, with higher standard deviation for higher latitudes. This is in line with the findings 
reported in Gentemann (2014). Furthermore, our results show an increase in standard 
deviation in the dynamical ocean regions, which are regions with large mesoscale activity 
and large SST variability over smaller scales. This is not believed to be related to the 
performance of the algorithm, but to sampling errors due to comparison of satellite 
observations, which have a large footprint, to in situ observations, which are point 
measurements. It was evident from Figure 6 and Figure 9 that we saw some sea ice 
contamination in the high latitudes. Due to the construction of the MMD, we were only able 
to mask out ice within 160 km in the algorithm development and validation, which is 
probably too low. The effect on the global validation statistics is limited but when generating 
the full CDR, an ice mask distance of 200 km was chosen to minimize the impact from sea 
ice. These residual effects from the sea ice could probably be reduced in an algorithm, 
where the sea ice information is based upon a retrieval using the observations and not 
relying on an external product. No coastal effects were seen in the validation. 

The performance of the PMW SST retrievals is comparable to the good infrared satellite 
SST retrievals, in particular when the sampling errors are taken into account. The 
difference in footprint size between the IR (1 km) and the PMW SSTs (40-70 km) will 
introduce a larger sampling difference. Furthermore, cloud contamination has a significant 
impact on infrared SST retrievals since IR satellite instruments are unable to see the 
surface through clouds (e.g. Jones et al., 1996; Reynolds et al., 2002). In addition, both 
aerosols (Diaz et al., 2001; e.g. Vásquez-Cuervo et al., 2004) and water vapour attenuation 
(Emery et al., 1994) typically are related to biases in the IR retrievals. PMW SSTs don’t 
suffer from contamination due to either of these factors, but they are limited by precipitating 
clouds. The availability of PMW SSTs in regions characterized by persistent cloud cover 
should therefore be much higher than the availability of IR SSTs. Table 1 shows the 
availability of the PMW SSTs globally. However, the filtering procedure described in Section 
3.2.5.2 includes flagging of not only the quality of the satellite data but also flagging based 
on in situ and auxiliary data, as well as flagging to remove diurnal warming effects. By 
excluding the filters which do not pertain to the quality of satellite data, the availability of 
PMW SSTs in the tropical Indian Ocean (80-100°E,15°S-20°N), which is a region 
dominated by clouds (Rossow, 1993) and heavy rain (Arkin and Janowiak, 1993), were 
found to be 71%. This is in line with findings reported by Guan and Kawamura (2003), 
where the annual mean availability of PMW SSTs in the tropical Indian Ocean was 
estimated to 73%. The availability of IR SSTs in the same region was reported to be 35% 
(Guan and Kawamura, 2003). The performance of the PMW SSTs against drifter in situ 
observations in this region was found to be -0.04 ± 0.36 K. The majority of matchups were 
of quality level 5, with only some quality level 4 data. 

Ideally, the SST sensitivity should be 1, however, there are several geophysical factors 
affecting the microwave retrieval, such as water vapour, cloud water and surface roughness 
(quantified through wind speed). These factors contribute to lower sensitivity to the true 
SST variations. Nielsen-Englyst et al. (2018) reported sensitivities ranging from 0.4 to up to 
0.6, with the lowest values found for high latitudes. Similar results were found by 
Gentemann et al. (2010). In contrast, we have reported sensitivities ranging from just below 
0.5 up to close to 1.0, with the lowest sensitivities found at low latitudes. The reason for the 
low sensitivity is probably an effect of the binning performed in both the first-stage and the 
second-stage retrieval. When performing the regression, we divide the data into different 
bins. If the SST variability within a bin is very small, the algorithm corrects for other factors, 
such as wind speed (through its impact on surface roughness), water vapour, etc. instead 
of SST. Hence, the sensitivity to changes in true SST will be lower. Tests using a global 
coefficients showed a latitudinal pattern in the sensitivity, as expected, with highest 
sensitivity for warmer waters. The overall sensitivity was, however, lower than what was 
obtained with the two step algorithm. 

The CDR generated here showed a good inter-sensor consistency, as they have been 
referenced to the same in situ observational network. The use of in situ observations for 
SST algorithm developments has a risk of introducing biases related to inadequacies in the 
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observational network. This effect was attempted to be minimized with the geographical 
even-out-by-latitude and appeared to be small for our algorithm, as the Argo validation 
confirms the validation from drifting buoys. However, the approach of using physically 
based retrievals is preferred for the IR retrievals as discussed in (Merchant et al., 2008; 
Merchant and Le Borgne, 2004) and have also shown promising results for AMSR-E 
(Nielsen-Englyst et al., 2018). Future developments could include forward modelling in the 
inter-sensor adjustment and algorithm developments. 

A High Priority Candidate Mission (HPCM) called the Copernicus Imaging Microwave 
Radiometer (CIMR, (Donlon, 2019; Kilic et al., 2018)) is now being studied at the European 
Space Agency. CIMR proposes a conically scanning radiometer having a swath > 1900 km 
and will include channels at 1.4 GHz (~60 km), 6.9 and 10.65 GHz (<15 km) 18.8 GHz (5-6 
km) and 36.5 GHz (4-5) km on the same platform in a high inclination dawn-dusk orbit 
coordinated with the MetOp-SG(B) (offering opportunities for synergy with the Microwave 
Radiometer (MWI) and Scatterometer (SCA)).  Our algorithms can easily be adapted to the 
CIMR frequencies, taking into account the enhanced spatial resolution, improved NEdT and 
addition of an L-band channel that can help in wind speeds much greater than 20 m s-1. 

 

2.6 Conclusions 

Retrieval algorithms have been developed with the purpose of generating an SST climate 
data record from the AMSR-E and AMSR2 passive microwave satellite observations for the 
period 2002-2016. The algorithms include WS retrievals and SST retrievals, with 
corresponding uncertainty retrievals and a new and effective method for detecting and 
removing RFI contamination. The results show an overall bias and standard deviation for 
quality level 4 and 5 AMSR-E and AMSR2 PMW SSTs against drifter in situ SSTs of -0.02 ± 
0.46 K and 0.002 ± 0.45 K, respectively. The modelled uncertainty, including in situ 
uncertainty and sampling effects, are estimated to 0.45 K and 0.44 K, respectively. The 
thorough validation results against independent in situ observations demonstrate that the 
algorithms developed here generate a consistent climate data record, with very good 
performance and reliable uncertainty estimates. Furthermore, a sensitivity of 0.9 for the 
algorithm ensures retrievals that are able to represent the true variability in the SST.  

To conclude, the PMW SST CDR record has been shown to provide accurate and 
consistent SST retrievals which can be used in non-precipitating conditions for global 
monitoring and assessment of the oceans. With the uncertainties in the funding for future 
microwave satellite missions, it is therefore highly recommended that a fully operational 
multi-frequency passive microwave satellite mission, such as CIMR, should be part of the 
future satellite constellation to monitor the world oceans. 
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3. TECHNICAL CONSIDERATIONS FOR THE PMW RETRIEVAL 
IMPLEMENTATION  

The approach used in this work package was to implement a DMI MW SST retrieval 
method in the UoR GBCS processing system used extensively elsewhere in the project.  
This effectively exploited the respective expertise available at the two institutions with DMI 
recoding their existing retrieval scheme as FORTRAN routines that interfaced with the 
GBCS system and UoR adapting the python framework and GBCS FORTRAN code to 
provide the data required for MW processing and to interpret and format the output 
consistently with the rest of the project. Initial work had taken place under WP23 in an 
experimental branch of the GBCS code to investigate the feasibility of MW retrievals using 
AMSR2 data. In this, individual AMSR2 data files could already be ingested and a radiative 
transfer model run but a full retrieval scheme had not been implemented. These changes 
were integrated into the main processing body of the code under this WP. 

Initial file processing for AMSR-E was undertaken using a python script that made use of 
the hdf4cf utility to convert the original data files from HDF4 to netCDF format and then 
enforce CF-compliance. The netCDF files could then be read by one of the existing GBCS 
routines. AMSR2 hdf5 data files were ingested directly into the GBCS processor using the 
toolkit “AMTK” provided by JAXA. This toolkit required significant effort to integrate 
successfully with the modern FORTRAN 2003 code used in GBCS.  Adaptations required 
by the code to use the data included intelligently handling the scanline based quality 
information rather than per pixel values, reformatting the time information, and converting 
the solar and view angles to standard definitions. 

Changes were made to the staging of NWP data to make cloud liquid water available to the 
processor. Tie points for the intermediate meteorological files were set at every 4th pixel 
(~40 km). New configuration files were created to specify the characteristics of the MW 
instrument and the parameters required for the retrievals. Alterations were made to the 
existing retrieval interface and output structures to make the retrieved total column of water 
vapour and wind speed available in addition to the retrieved SST. 

Adjustments were made to the way the diurnal variability model was applied to the retrieved 
data to eliminate a skin adjustment as MW instruments measure “sub-skin” SSTs rather 
than “skin” values. 
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4. IMPACT ASSESSMENT OF LEVEL 2 PMW CDR ON LEVEL 4 
ANALYSIS  

4.1 Introduction 

The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system (Donlon, 
et al. 2012) is run operationally at the Met Office. It assimilates a variety of satellite 
retrieved SSTs and in situ observations to produce a daily, global SST analysis. The 
outputs are disseminated by the Copernicus Marine Environment Monitoring Service 
(CMEMS; marine.copernicus.eu) and are used for purposes such as for the boundary 
conditions for numerical weather predictions.  

The OSTIA system has been configured to produce analyses for the ESA SST CCI project 
(Merchant, Embury, et al. 2014) (Merchant 2019). In this configuration, only satellite 
retrieved SSTs from the ATSR and AVHRR series of infra-red sensors are used to 
calculate the analysis in order to create the most stable dataset for climate researchers. 
The disadvantage to this choice is that there may be locations around the globe where 
there are persistently no inputted SSTs. This may occur, for example, due to cloud, which 
obscures the IR sensor’s view of the surface. In the situation where there are no input data, 
the analyses relax towards climatology. 

The climatology used in the system that generated the phase 2 SST CCI analyses was 
created from the phase 1 SST CCI analyses. Validation of these analyses has revealed that 
there are locations where they tended to be negatively biased such as in the north-west 
Indian Ocean (See PVIR report (Corlett, et al. 2014)). It was suspected that this was due to 
tropospheric aerosols. These biases will therefore also appear in the phase 2 analyses 
when there are no input data in those locations. 

SSTs retrieved from PMW data have the potential to overcome these issues as they are 
able to provide data in some situations where IR-based SSTs are not available. To test this, 
some of the phase 2 SST CCI analyses were reprocessed with PMW CDR data assimilated 
in addition to the IR CDR data. By running the OSTIA system with the reprocessed PMW 
observations and comparing the output to a control IR dataset, we can determine their 
impact. The PMW observation datasets under investigation are from two instruments, 
AMSR-E (time range 200206 - 201109) and AMSR2 (201207 – 201612). 

However, note that the PMW data are sparser than the IR data as they are subsampled to 
a 25 km spacing rather than 6 km spacing used for IR. This is because the viewing footprint 
of the PMW instruments is larger than for the IR instruments. Therefore, it is anticipated 
that the IR data will dominate outside of regions where the IR data are persistently missing. 

In addition to comparing the SST analyses, comparisons are made of observation influence 
analyses (OIA) values produced by the OSTIA system. The SST analyses are produced by 
combining a first guess SST field (which is based on the previous day’s SST analysis) with 
the satellite SSTs. The OIA values signify the relative weighting of the first guess field and 
the satellite SSTs in each grid location. A grid box with a value of 0 indicates that no 
observations were found for that pixel and that the first guess datum was used instead. 
Values of ~1 indicate that observations dominated in that grid box. By comparing the 
observation influence analysis (OIA) values from the analyses that used PMW data to the 
control which used only IR data, we can determine whether PMW observations are adding 
value to otherwise unobserved regions, and which areas of the planet see the greatest 
impact. Finally, statistics have been generated using near-surface Argo data as reference. 
Since Argo data is not used in the analyses, these provide an independent measure of 
whether the PMW data are improving or degrading the analyses. 
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4.2 Results 

Figure 13 shows daily global averages of the OIAs. It can be seen that the PMW analyses 
have a consistently higher global average OIA than the control dataset. This indicates that 
the PMW data are having an impact on the analyses. Note that the zero values on the plot 
correspond to the gap between AMSR-E and AMSR2 observations. 

 

Figure 13: Difference in daily global OIA values. 

In order to gain insight into the distribution of the differences in OA values, plots of the 
difference in the global monthly average OIA values were generated. Throughout the time 
period, it can be seen that the greatest increase in OA are observed in the tropical regions, 
especially in the coastal areas.  Figure 14 displays examples from 2010 to illustrate the 
typical distribution in OA values. 
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Figure 14: Global monthly average observation analysis values. 

A comparison of SSTs reveals that the PMW analyses have slightly but consistently hotter 
global average daily SST values (Figure 15). This could be a result of the larger number of 
tropical observations correcting cold biases in the IR-only analyses. However, it could also 
be a symptom of a relative bias between the IR and PMW input data. Maps of the global 
monthly average SST differences (Figure 16) show that, although the analyses are warmer 
at the equator – there are also warm temperature patches observed in the North Pacific, 
even towards the Arctic regions. Interestingly – while the effect is apparent with AMSR-E 
data, the warm Arctic patches increase in intensity when using AMSR2 observations. 
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Figure 15: Difference in daily global average SST values 

 

 
 

Figure 16: Global monthly SST difference 
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An examination of monthly maps of the difference in standard deviation of SST (Figure 17) shows 
that the inclusion of the PMW data is having an impact on SST variability. Most of the stronger 
differences in SD values occur in patches. However, it is not possible to determine from these 
whether the PMW data is improving the quality of the analysis. 

 
Figure 17: Global monthly SD difference 

 

Argo near-surface observations have been compared to the two sets of analyses in order to 
determine if the PMW data are improving the analyses. The Argo data are high quality and 
independent since they are not used in the analyses, and have been used previously to 
assess SST CCI analyses   (Fiedler, et al. 2019). The results for AMSR-E and AMSR2 are 
shown in Table 8 and Table 9 respectively.  

As found previously, the PMW data have tended to warm the analyses and there is a 
reduced mean difference to Argo data in many regions. The standard deviation of 
differences has also been reduced broadly across the globe, which indicates a positive 
impact from the PMW data. 
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Table 8: Statistics of the differences between the analyses and Argo data for the 
AMSR-E period. Where statistics are better by at least 0.02 between the types of 
analysis, the better of the two is highlighted in bold 

 

 IR – only analyses IR and PMW analyses  

Region Mean 
difference (K) 

Standard 
deviation of 
differences (K) 

Mean 
difference (K) 

Standard 
deviation of 
differences (K) 

Number of 
matchups 

Globe -0.065 0.445 -0.040 0.415 473987 

Arctic -0.188 0.532 -0.149 0.488 2754 

Mediterranean Sea 0.093 0.762 0.101 0.761 2941 

North Atlantic -0.056 0.549 -0.027 0.517 63605 

Tropical Atlantic -0.110 0.359 -0.053 0.324 24402 

South Atlantic -0.056 0.432 -0.038 0.406 39860 

North Pacific -0.059 0.478 -0.022 0.444 166408 

Tropical Pacific -0.062 0.278 -0.042 0.260 102518 

South Pacific -0.064 0.342 -0.052 0.325 113292 

Indian Ocean -0.084 0.392 -0.060 0.352 84471 

Southern Ocean -0.087 0.446 -0.066 0.423 93927 
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Table 9: Statistics of the differences between the analyses and Argo data for the 
AMSR2 period. Where statistics are better by at least 0.02 between the types of 
analysis, the better of the two is highlighted in bold 

 

 IR – only analyses IR and PMW analyses  

Region Mean 
difference (K) 

Standard 
deviation of 
differences (K) 

Mean 
difference (K) 

Standard 
deviation of 
differences (K) 

Number of 
matchups 

Globe 0.053 0.452 0.026 0.395 337634 

Arctic 0.065 0.552 -0.048 0.526 3040 

Mediterranean Sea -0.036 0.440 -0.042 0.433 6831 

North Atlantic 0.069 0.477 0.038 0.414 59418 

Tropical Atlantic 0.186 0.386 0.084 0.316 25910 

South Atlantic 0.072 0.540 0.033 0.468 25840 

North Pacific 0.036 0.468 0.002 0.410 116885 

Tropical Pacific 0.043 0.310 0.033 0.272 93485 

South Pacific 0.044 0.368 0.035 0.326 86940 

Indian Ocean 0.097 0.417 0.065 0.352 47506 

Southern Ocean 0.070 0.525 0.037 0.459 63027 

 

To examine the impact of PMW data on feature resolution, power spectra plots were 
generated for three regions: 

1. Gulf Stream: (North Atlantic), 38.875-45.125 N, 65.125-49.875 W 

2. Kuroshio: (North Pacific), 32.5-45.125 N, 141.875-170.125 E 

3. Agulhas Retroflection Current: (South Atlantic), 45-27 S, 9.875-50.125 E 

Monthly and yearly plots were generated for each region over the whole period. The results 
show very little difference between the control and IR+PMW data. Plots from 2010 are 
included as an example (Figure 18). It seems that the benefits of PMW data are over larger 
domains than the three areas investigated. In addition, the biggest differences observed in 
the monthly mean and standard deviation SST plots (Figure 16 & Figure 17) were in the 
tropics and especially in the coastal areas (such as the Philippines) whereas the three 
domains explored here are in the higher/lower latitudes. Time constraints mean that we are 
unable to explore this avenue of investigation further. 
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Figure 18: Regional power spectra plots. 
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4.3 Summary 

Comparisons of analyses where only IR data are used to analyses where PMW and IR are 
combined show that PMW observations increase the number of observations in regions 
that are currently poorly observed in the IR dataset. However, the impact of the PMW data 
is not limited to those regions as demonstrated by maps of difference in SST and standard 
deviation of SST. This is perhaps surprising because the PMW data is relatively sparse 
compared to the IR data. On a global average, SSTs are warmed by the inclusion of PMW 
data. The PMW data’s impact on SST standard deviation is variable and sometimes has 
the effect of increasing or decreasing the standard deviation, depending on location. 
Statistics of differences between the analyses and independent Argo data show a clear 
benefit from use of PMW data. 

These results demonstrate that the inclusion of PMW data is beneficial to the analyses and 
that there is a strong case for including them in the next reprocessing of the CDR.  
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5. CONCLUSIONS AND WAY FORWARD  

The work presented in this report demonstrates that PMW satellite observations provide 
valuable observations to be used for monitoring the SST in non precipitating conditions. 
The funding for future microwave satellite missions is currently unsecure. A High Priority 
Candidate Mission (HPCM) called the Copernicus Imaging Microwave Radiometer is now 
being studied at the European Space Agency. The CIMR proposes a conically scanning 
radiometer with a swath > 1900 km. It will include channels at 1.4 GHz 6.9 and 10.65 GHz 
18.8 GHz and 36.5 GHz on the same platform in a high inclination dawn-Dusk orbit 
coordinated with the MetOp-SG(B). The expected spatial resolution on the 6.9 GHz channel 
will be 15 km. The L2P retrieval algorithms presented here can easily be adapted to the 
CIMR frequencies taking into account the enhanced spatial resolution, improved NEdT and 
addition of an L-band channel. Based upon the results obtained here, it is therefore 
recommended that the CIMR satellite will be selected for an operational mission, to extend 
and improve on future PMW based SST CDRs.   
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