
 

 

Customer : 

Contract No : 

WP No : 

ESRIN 

4000109848/13/I-NB  

100 

Document Ref : 

Issue Date : 

Issue : 

SST_CCI-ATBD-DMI-201 

02 February 2018 

1.0 

  

Project : SST CCI Phase-II 

 
  

Title : ATBD - DMI Optimal Estimator for PMW SST retrievals 
  

Abstract : This document contains the ATBD for WP100 in Phase-II of the SST_cci project. 

Author(s) :   Checked by :   

 
Pia Nielsen-Englyst,  Jacob L. 
Høyer, Leif Toudal Pedersen 
and Jörg Steinwagner 

DMI 

 Chris Merchant 
Science Leader, UoR 

Ruth Wilson 
Assistant PM, SCL 

 

 

    Accepted by :   

   Craig Donlon 
ESA Technical Officer 

ESTEC 

Distribution : SST_cci team members 

ESA (Craig Donlon) 

 

 EUROPEAN SPACE AGENCY 
CONTRACT REPORT 

The work described in this report was done under ESA contract. 
Responsibility for the contents resides in the author or organisation 

that prepared it. 

 

 

 
 



SST CCI Phase-II  SST_CCI-ATBD-DMI-201 
ATBD - DMI Optimal Estimator for PMW SST retrievals  Issue 1.0 

 
 

  Page 2 

 

AMENDMENT RECORD 

This document shall be amended by releasing a new edition of the document in its entirety.  
The Amendment Record Sheet below records the history and issue status of this document. 

 

AMENDMENT RECORD SHEET 
 

ISSUE DATE REASON FOR CHANGE 

0.1 25-10-17 First draft for internal review 

1.0 02-02-18 Issued following internal reviews 

 
 



SST CCI Phase-II  SST_CCI-ATBD-DMI-201 
ATBD - DMI Optimal Estimator for PMW SST retrievals  Issue 1.0 

 
 

  Page 3 

 

TABLE OF CONTENTS 
 

1.1 Introduction ................................................................................................................................4 

1.2 Input data ...................................................................................................................................4 

1.2.1 Preprocessing ....................................................................................................................5 

2.1 The Inverse Problem ................................................................................................................5 

2.2 Forward Model...........................................................................................................................6 

2.3 OE set-up ...................................................................................................................................6 

2.3.1 Iterations .............................................................................................................................7 

2.3.2 Bias corrections ..................................................................................................................8 

2.3.2 Final configuration .............................................................................................................8 

2.4 Output data ................................................................................................................................9 

 
 
 
 



SST CCI Phase-II  SST_CCI-ATBD-DMI-201 
ATBD - DMI Optimal Estimator for PMW SST retrievals  Issue 1.0 

 
 

  Page 4 

 

1. Overview and background information 

1.1 Introduction 
 

The sea surface temperature (SST) is an essential climate variable that is fundamental for climate 

monitoring and for the understanding of the air-sea interactions. It has been observed from infrared 

satellites since the early 1980’s, but these observations are limited by clouds and severely impacted 

by aerosols (Vázquez-Cuervo et al., 2004, Reynolds, 1993; Reynolds et al., 2002). SST observations 

from passive microwave (PMW) observations are widely recognized as an important alternative to the 

infrared observations (Donlon et al., 2007, Donlon et al., 2009). They are not limited by clouds and the 

impact of aerosols is small (Wentz et al., 2000; Chelton and Wentz, 2005). 

 

We have used the Optimal Estimation (OE) principle to retrieve PMW SSTs. OE retrieval methodology 

differs from e.g. standard regression models, in that it utilizes a forward model that includes Numerical 

Weather Prediction (NWP) information to calculate simulated brightness temperatures. The use of OE 

for determining SST does incur additional computational costs because of the required forward 

modeling, but can have significant advantages as the optimal estimator can be designed to account 

for both retrieval error and SST sensitivity (Merchant et al., 2013). In general, PMW SST retrievals are 

challenging due to several effects not related to the SST from e.g. wind, atmospheric attenuation and 

emission, sun-glint, land contamination, and Radio Frequency Interference (RFI). The use of 

simulations and the OE methodology for the retrieval is therefore tempting as they provide additional 

information which can be used to filter these effects out.  

 

This algorithm theoretical basis document (ATBD) describes in detail the DMI OE Algorithm for the 

retrieval of SST from the JAXA’s Advanced Microwave Scanning Radiometer - Earth Observing 

System (AMSR-E) instrument. More information on the OE setup can be found in Nielsen-Englyst et 

al., 2018.   
 

1.2 Input data 
 

The input to the retrieval processor that we are using is a Multisensor Matchup Dataset (MMD), 

version MMD6c, but the algorithm is designed to work on any dataset that contains the AMSR-E 

brightness temperature with auxiliary information. The MMD6c dataset consists of simultaneous 

overpasses of AMSR-E data matched to a large dataset of SST in situ measurements. This in situ 

dataset used for the algorithm testing and validation is composed of quality controlled measurements 

taken from the International Comprehensive Ocean-Atmosphere Dataset (ICOADS) version 2.5.1, the 

Met Office Hadley Centre Ensembles dataset version 4.2.0 (EN4) (Good et al., 2013) and Global 

Tropical Moored Buoy Array (GTMBA) data taken from NOAA PMEL (McPhaden et al. 2009).  

 

For the identification of the matchups and the extraction of the data we used the Multisensor Matchup 

System (MMS) software that has been developed for the ESA SST-CCI project and European Union’s 

Horizon 2020 research and innovation programme under grant agreement No 638822 (FIDUCEO 

project) (Block et al., 2017). The MMD also includes the ERA-Interim NWP data (Dee et al., 2011) and 

sea surface salinity (SSS) from the World Ocean Atlas (WOA) 2013 version 2 (Zweng et al., 2013; 

Boyer et al., 2013) referencing each AMSR-E pixel and each in situ measurement. These data were 

linearly interpolated in time and space to the matchup location.  
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1.2.1 Preprocessing 
 

A number of fields need to be calculated from the MMD. These include the: 

 

 The integrated (columnar) cloud liquid water content (TCLW) 

In order to get TCLW the pressure is calculated from the surface pressure on 60 levels:  

            

where the constants a and b are given in Table A1. TCLW is then given by 

         
      

 
 , 

where dP is the pressure difference between two levels, g is the gravity constant and CLW is the 

cloud liquid water field from the MMD. 

 

 Wind speed 
The wind speed (WS) is calculated by:  

          , 

where u and v are the east and north component of  the wind vector. 

 

 Wind direction relative to satellite azimuth,      is calculated by: 

             , 

where     is the direction the wind is blowing towards relative to north and      is satellite 
azimuth angle.  
 

2. Algorithm description  

2.1 The Inverse Problem 
 

We use an OE based inversion technique to find the most probable ocean and atmospheric state 

given AMSR-E measurements and some prior knowledge based on NWP fields. The inversion 

approach follows the OE technique by Rodgers 2000 and we broadly follow his conventions.  The 

relationship between the geophysical parameters i.e. the state vector x, and the corresponding ideal 

measurement yI is determined by the physics of the measurement, which can be described as the 

forward function f(x) (Rodgers 2000): 

yI = f (x). (1) 

In practice, there will always be a measurement error and it will also be necessary to approximate the 

ideal physics by a forward model approximation F(x). The relationship between the geophysical 

parameters and the measured brightness temperatures can be generalized to the following 

expression: 

y = F (x) + e, (2) 

where y is the measurement vector (observed microwave brightness temperatures); F(x) is the non-

linear forward model approximating the physics of the measurement including the radiative transfer 

through the atmosphere (Wentz and Meissner 2000); x is the state vector containing the relevant 
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geophysical properties of the ocean and atmosphere; and e is an error term containing uncertainties 

due to the measurement noise and errors in the forward model. According to Eq. 5.3 of Rodgers 

(2000) we aim to find the state vector x, which minimizes the cost function J: 

             
                 

   
          (4) 

where Sϵ is a covariance matrix for the measurement and forward model uncertainties, Sa is the 

covariances of the a priori state xa (the a priori guess of the ocean and atmospheric state x). The cost 

function, J, is a measure of the goodness of the fit to both the measurements (first term on the right) 

and the a priori state (second term on the right) balanced by the inverse of their relative uncertainties 

(Se and Sa). 

 

In this nonlinear case, Newtonian iteration is a straightforward numerical method for finding the zero 

gradient of the cost function. Using Newtonian iteration, the state x that minimizes the cost function 

can be found by: 

             
   

              
            (5) 

where Sx is the error covariance matrix of the retrieved parameters: 

      
     

   
     

    (6) 

The matrix K expresses the sensitivity of the forward model to a perturbation in the retrieved 

parameters, i.e. it is a matrix consisting of the partial derivatives of the brightness temperatures in a 

particular channel with respect to each parameter of the state vector. Due to the non-linearity these 

partial derivatives need to be computed at each iteration step (state). 

 

The averaging kernel matrix, A, relates the sensitivity of the retrieval to the true state. It is defined as: 

   
   

  
    

     
   

     
      

   .  

2.2 Forward Model    
 

The forward model predicts the top-of-atmosphere microwave brightness temperatures that should be 

measured by the individual channels of a radiometer given knowledge of the relevant geophysical 

parameters of the ocean and atmosphere. The forward model used here is based on the physical 

surface emissivity and Radiative Transfer Model (RTM) described in Wentz and Meissner (2000). The 

RTM consists of an atmospheric absorption model for oxygen, water vapor and cloud liquid water and 

a sea surface emissivity model that determines the emissivity as a function of sea surface 

temperature, sea surface salinity, sea surface wind speed and direction. Few components have been 

adjusted with respect to Wentz and Meissner (2000). These include the wind directional signal of sea 

surface emissivity, which has been left out; and the fact that we only use the V- and H- polarizations 

for the 6.9, 10.7, 18.7, 23.8, 36.5 GHz channels.  

2.3 OE set-up 
 

The measurement vector, y, used in our forward model consists of dual polarization observations (v-

pol and h-pol) at the 5 lower frequencies: 6.9, 10.7, 18.7, 23.8, 36.5 GHz. Four geophysical 

parameters are considered to be the leading terms controlling the observed microwave brightness 

temperatures in the measurement situation (considering open-ocean only):   

(7) 
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x = (WS, TCWV, TCLW, SST), (8) 

where WS is the wind speed, TCWV is the integrated columnar atmospheric water vapor content, 

TCLW is the integrated (columnar) cloud liquid water content, and SST is the sea surface 

temperature. 

 

The variation of the retrieved geophysical parameters is restricted by use of a priori information 

from NWP about the mean (a priori state) and covariances of the parameters. The covariance matrix 

of the geophysical parameters related to x is fixed to:    

   

 
 
 
 
 
   
    

      
   

       
  

       
  

 
 
 
 

 (9) 

with    = 2 m/s,      =0.9 mm,      = 1 mm and     = 0.50 K.  The uncertainties on the WS, TCVW 

and TCLW are best estimates based upon published validation results (see e.g. Dee et al., 2011; 

Chelton and Freilich, 2005; Jakobson et al., 2012; Li et al., 2008; Jiang et al., 2012). The SST uncertainty is 

derived from a comparison against Argo drifting buoys. The measurement covariance matrix, Sϵ, is 

calculated from the differences between the observed and calculated TBs (TBobs–TBcalc). It is set to: 
  

6V 6H 10V 10H 18V 18H 23V 23H 36V 36H 
 
 
 
 
 
Sϵ = 

6V 0.1162 0.1268 0.0412 -0.0286 0.0082 -0.1338 0.0843 -0.0531 0.1071 -0.0015 

6H 0.1268 0.3069 -0.0340 -0.0689 -0.0689 -0.2258 0.0927 -0.0562 0.1590 0.0238 

10V 0.0412 -0.0340 0.1181 0.0389 0.0982 -0.0243 0.0736 -0.0818 0.0788 0.0389 

10H -0.0286 -0.0689 0.0389 0.0903 0.0007 0.0336 -0.0187 -0.0411 -0.0146 0.0007 

18V 0.0082 -0.0689 0.0982 0.0007 0.2283 0.0695 0.1010 -0.1069 0.1127 0.1001 

18H -0.1338 -0.2258 -0.0243 0.0336 0.0695 0.2816 -0.1257 0.0015   -0.1481 0.0215 

23V 0.0843 0.0927 0.0736 -0.0187 0.1010 -0.1257 0.2706 -0.0278 0.2024 0.1039 

23H -0.0531 -0.0562 -0.0818 -0.0411 -0.1069 0.0015 -0.0278 0.2591 -0.1137 0.0009 

36V 0.1071 0.1590 0.0788 -0.0146 0.1127 -0.1481 0.2024 -0.1137 0.2771 0.0935 

36H -0.0015 0.0238 -0.0389 -0.0007 -0.1001 -0.0215 -0.1039 -0.0009 -0.0935 0.0902 

 

with matrix elements given in K
2
. In order to calculate the Jacobians we use the disturbance 

parameter, ɛ:  

ɛ                               
 

(10) 

2.3.1 Iterations  
 

According to Rodgers (2000) the most straightforward convergence test is to ensure that the cost 

function (Equation 4) is being minimized. The change in the cost function between two subsequent 

iterations will always be small near a cost minimum. Noting that the expected value of the cost 

function at the minimum is equal to m degrees of freedom (m=10) an appropriate test would be to 

require the change between iterations of              or               . In addition,    is 

required to be positive at the final solution. 

 

A maximum of 10 iterations are allowed and a failure to meet the above convergence criterion within 

10 iterations will lead to an exclusion of the data (<0.1%). Usually, there are less than 6 iterations until 

the above criterion is met.  
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2.3.2 Bias corrections  
 

In order to correct for the forward modelling error, we apply two bias corrections. The two step 

procedure was tested to be superior to the one step bias correction. In the first bias correction of the 

forward model the observed brightness temperatures are corrected by adding a constant to each 

channel:                                                               

                          6V 6H 10V 10H 18V 18H 23V 23H 36V 36H 

TB_bias     =    0.3524 0.0793 -0.1093 -0.7521 0.6228 0.2794 0.0200 -0.2669 -0.3540 0.1464 

 

We apply a second bias correction scheme using empirical fitting of simulated brightness 

temperatures minus observed brightness temperatures to analytic functions of SST, WS; and   . The 

regression model obtained for the forward model residuals is: 

              
                                       

  

 
  

d4sin r2+d5cos r3+d6sin r3+d7cos r4+d8sin r4, 
(11) 

with coefficients for each channel given in Table 1.  

Table 1. Coefficients used for the empirical bias correction of the forward model. 

 

6V 6H 10V 10H 18V 18H 23V 23H 36V 36H 

a1 
-2629 -0.043863 0.00092174 0.16561 -0.0037224 11.097 -0.07976 31.758 1031.09.00 -3585.5 

b1 -761.31 -0.046834 0.0015381 0.009931 0.0056594 32.557 0.55457 -22.138 300.19.00 -949.8 

b2 
-1950.2 -0.0049384 -0.00045973 0.16759 -0.0075212 86.239 0.79548 -38.605 773.37.00 -2506.6 

c1 
1318.03.00 0.0096035 -0.00076459 0.035344 -0.0043369 -48.318 29.678 -140.28 -502.2 2332 

c2 
-1227.7 0.036307 -0.0011215 0,863194444 -0.0047699 54.553 12.112 -60.005 486.54.00 -1433.1 

d1 2719.05.00 0.04087 -0.00090555 0.032087 -0.0052348 -11.19 24.609 -117.12 -1062.8 4159.05.00 

d2 -3547.6 0.0056961 -0.0009869 0.0019303 0.0013516 13.986 -51.863 247.19.00 1372.04.00 -5784.8 

d3 -1442.1 0.01482 -0.00035264 -0.17036 0.0060634 39.163 -99.164 466.18.00 520.51.00 -3759.8 

d4 -2965.2 -0.0051674 -0.00014784 0.073759 -2,05E-01 11.966 14.513 -61.712 1153.04.00 -3771.1 

d5 2713.09.00 -0.0096709 0.00056282 -0.027147 0.0016354 -10.306 21.689 -102.28 -1041.5 4063.07.00 

d6 
-2629 -0.043863 0.00092174 0.16561 -0.0037224 11.097 -0.07976 31.758 1031.09.00 -3585.5 

d7 -761.31 -0.046834 0.0015381 0.009931 0.0056594 32.557 0.55457 -22.138 300.19.00 -949.8 

d8 -1950.2 -0.0049384 -0.00045973 0.16759 -0.0075212 86.239 0.79548 -38.605 773.37.00 -2506.6 

 

The second step bias correction is added to the simulated brightness temperatures individually, every 

time the forward model is called using retrieved SST and WS from the latest iteration. 

 

2.3.2 Final configuration  
 

Figure 1 illustrates the different processes performed in the final DMI OE algorithm. First the algorithm 

reads in the predefined   ,    and ɛ values. The observation loop is started for each satellite 

observation pixel by reading the observed brightness temperatures and the first guess values. 

Afterwards the iteration process is initiated. For each iteration, the forward model is used to calculate 

the simulated brightness temperature from the state vector (in the first step: state vector = first guess 

values). Moreover, the Jacobians (K), cost function (J), uncertainty (Sx) and sensitivity (A) are 

calculated. The change in the cost function between two iterations is used to test for convergence and 

a maximum of 10 iterations are allowed. Until convergence is met, the state vector is updated for each 
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iteration step and the iteration continues. When the iteration process is stopped the state vector is 

saved together with the output data listed in the following section.  

 

 

Figure 1. Flowchart of the DMI Optimal Estimation algorithm. 

The OE methodology directly provides an estimate of the retrieval uncertainty, Sx, due to uncertainties 

in the measurements, forward model, and in the a priori state vector (sees Equation 6). However, it is 

also found that the quality of the SST retrieval is closely connected to the root mean squared error of 

the simulated brightness temperatures minus observed brightness temperatures (RMSETB). For that 

reason, we have set up an additional uncertainty indicator based on a scaled RMSETB value: 

 

SST = 0.55*RMSETB 

 

with  

          
 

 
                 
 

   

  (13) 

The scaling factor of 0.55 was found from comparison with in situ observations and under the 

assumptions that drifting buoys have a total uncertainty of 0.2 K and that the sampling uncertainty is 

0.3 K. 

2.4 Output data 
 

When the convergence criterion has been met, the retrieval is finished. The outputs of the optimal 

estimation algorithm are; the retrieval state vector consisting of wind speed, total column water vapor, 

total cloud liquid water, and sea surface temperature; their uncertainties; corresponding averaging 

kernels; corresponding simulated brightness temperatures etc. for each AMSR-E measurement: 

 

 Retrieved state vector: x 

 Simulated brightness temperatures from final iteration: F(x) 

(12) 
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 OE uncertainty: Sx 

 SST uncertainty:       

 Averaging Kernels: A 

 Observed brightness temperatures: y 

 First guess (NWP): p0 [WS, TCWV, TCLW, SST] 

 Number of iterations performed: i
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Appendix A 

Table A1: Coefficients for the pressure calculation. 
 

a b 

0.000000 0.000000 

20.000.000 0.000000 

38.425.343 0.000000 

63.647.804 0.000000 

95.636.963 0.000000 

134.483.307 0.000000 

180.584.351 0.000000 

234.779.053 0.000000 

298.495.789 0.000000 

373.971.924 0.000000 

464.618.134 0.000000 

575.651.001 0.000000 

713.218.079 0.000000 

883.660.522 0.000000 

1.094.834.717 0.000000 

1.356.474.609 0.000000 

1.680.640.259 0.000000 

2.082.273.926 0.000000 

2.579.888.672 0.000000 

3.196.421.631 0.000000 

3.960.291.504 0.000000 

4.906.708.496 0.000000 

6.018.019.531 0.000000 

7.306.631.348 0.000000 

8.765.053.711 0.000076 

10.376.126.953 0.000461 

12.077.446.289 0.001815 

13.775.325.195 0.005081 

15.379.805.664 0.011143 

16.819.474.609 0.020678 

18.045.183.594 0.034121 

19.027.695.313 0.051690 

19.755.109.375 0.073534 

20.222.205.078 0.099675 

20.429.863.281 0.130023 

20.384.480.469 0.164384 

20.097.402.344 0.202476 

19.584.330.078 0.243933 

18.864.750.000 0.288323 

17.961.357.422 0.335155 

16.899.468.750 0.383892 

15.706.447.266 0.433963 

14.411.124.023 0.484772 
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13.043.218.750 0.535710 

11.632.758.789 0.586168 

10.209.500.977 0.635547 

8.802.356.445 0.683269 

7.438.803.223 0.728786 

6.144.314.941 0.771597 

4.941.778.320 0.811253 

3.850.913.330 0.847375 

2.887.696.533 0.879657 

2.063.779.785 0.907884 

1.385.912.598 0.931940 

855.361.755 0.951822 

467.333.588 0.967645 

210.393.890 0.979663 

65.889.244 0.988270 

7.367.743 0.994019 

0.000000 0.997630 

0.000000 1.000.000 
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