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1 Background 

1.1 CIBER Science requirements and scope of report 
This science requirements analysis is based on an in-depth review of the literature rele-
vant for the subsequent work in CIBER with the objective to ensure a state-of-the-art pro-
ject approach. This has included reviewing and analysing knowledge gaps, scientific chal-
lenges and research questions from different sources that relay interactions between 
climate and biodiversity. 

This report first outlines background information for the importance and concepts of bi-
odiversity and climate and for remote sensing of freshwater biodiversity as well as con-
ceptualising fish community habitat templates (Chapter 1). Chapter 4.1.3 outlines scien-
tific requirements and Chapter 3 summarizes freshwater climate-biodiversity knowledge 
gaps identified in recent scientific outcome reports from intergovernmental organiza-
tions and ESA projects (e.g. (Lever et al., 2024; Pörtner et al., 2021)) and other literature. 
Section 3.3 explains which science requirements the CIBER project aims to address from 
these knowledge gaps. Chapter 4 describes the data and methodological tools the CIBER 
project will use or develop to address the science requirements.  

1.2 Methodology for review and identification of 
relevant scientific papers 

Several sources have been utilised to identify knowledge gaps, scientific challenges and 
relevant research questions for CIBER. A main source is the review work done as part of 
the BIOMONDO project (Lever et al., 2024), see also Chapter 2, this document. Policy and 
science requirements related to freshwater biodiversity were extracted from strategies 
and policies, and from scientific literature with the aim to identify research areas for 
which there is potential for remote sensing data to support filling of knowledge gaps and 
address challenges. The policy documents reviewed included the main strategies as de-
fined in the ESA ITT, but the review was extended to also include other relevant policy 
publications and reports. For scientific issues and challenges, a search of the Web of Sci-
ence1 was performed with several combinations of search terms {lake biodiversity}, 
{river biodiversity}, {wetland biodiversity}, {lake “remote sensing”}, {river “remote sens-
ing”}, and {wetland “remote sensing”}. Based on the papers resulting from each of these 
searches, different fields of research were identified, and the results were analysed (net-
work and cluster analysis) to determine groups of “research themes” using methods and 
approaches described by Newman (2006) and Calamita et al. (2024). 

In CIBER, additional scientific papers were identified and reviewed by each partner for 

the different themes and document sections. Document searches in Google Scholar, Sco-

pus and Web of Science, as well as AI tools including ChatGPT and Claude.ai, were used to 

identify relevant papers. To exclude marine studies, it is essential to always use the search 

term “freshwater fish” in these literature surveys. We combined (“freshwater fish” OR 

“lake fish”) in different combinations with the following search terms:  

 
1 www.webofscience.com  

http://www.webofscience.com/
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1) “database” OR “data base”, “biodiversity”, “functional diversity”, “trait”, “species 

distribution”, “Europe” OR “European” OR “Eurasia” OR “Asia” 

2) habitat template OR habitat OR niche OR biogeography OR environmental filter*  

OR indicator species OR indicator tax* 

Besides these online literature surveys, it turned out to also be highly valuable to perform 
inverse searches (checking literature cited or follow-on papers citing) of existing data re-
positories, publications and books, for example: 

• Tedesco et al. (2017). A global database on freshwater fish species distribution. Sci-
entific Data. 

• Su et al. (2021). Global patterns of freshwater fish diversity under climate change. 

Science. 

• Bayat et al. (2025). Freshwater fish thermal tolerance and trait compilation. Scien-

tific Data. 

• Souchon & Tissot (2012). Synthesis of thermal tolerances of freshwater fish. 

Knowledge and Management of Aquatic Ecosystems. 

• Erős et al. (2009). Trait-based approaches in freshwater fish ecology. Freshwater 

Biology. 

• Brosse et al. (2021). Global biogeography of freshwater fish functional diversity. 

Global Ecology and Biogeography. 

• Cano-Barbacil et al.  (2020). Reliability analysis of fish traits reveals discrepancies 

among databases. Freshwater Biology. 

• Comte & Olden (2017). Evolutionary and environmental determinants of freshwater 

fish thermal tolerance. Global Change Biology. 

• Mehner & Brucet (2022). Structure of Fish Communities in Lakes and Its Abiotic and 

Biotic Determinants. Encyclopedia of Inland Waters, Second Edition. Book Chapter 

2022. DOI: 10.1016/B978-0-12-819166-8.00004-9 

 

This list of studies is considered as a growing compilation and is continuously extended. 

1.3 Importance of biodiversity and climate 
Biological diversity is the variety of life on Earth and depends on the many different as-
pects that make organisms and the communities within which they coexist unique. We 
face global challenges linked to biodiversity decline worldwide, and there is extensive re-
search and governance work on the linkages between climate and biodiversity. 

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 
(IPBES) and the Intergovernmental Panel on Climate Change (IPCC) have emphasized the 
inseparable connection between biodiversity and climate in a workshop report (Pörtner 
et al., 2021). The report highlights that current national and international policies address 
climate and biodiversity as separate issues, although the two are intertwined through 
mechanistic links and feedbacks that include “temperature-induced changes in photosyn-
thetic capacity and carbon storage, modified reflectivity of the land surface, altered for-
mation of clouds and atmospheric dust, and shifted biogeochemical cycling of nutrients and 
carbon, which in turn influence he concentration of greenhouse gases in the atmosphere” 
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(Pörtner et al., 2023). Biodiversity loss and climate change can therefore be considered 
both drivers and consequences of each other. 

The EU has also traditionally adopted a ‘silo approach’, for example in the policy areas of 
climate change, biodiversity and circular economy, which does not reflect the actual in-
terlinkages between these different domains (Paleari, 2024). However, the European 
Green Deal (launched in 2019), including the Nature Restoration Regulation (adopted in 
2025), has been designed as a coherent growth strategy, aimed to transform the EU into 
a “climate neutral and resource efficient economy, while protecting, conserving and en-
hancing the EU's natural capital” (European Commission, 2019). 

At the COP28UAE in 2023, a side event (Unpacking the biodiversity-climate nexus) high-
lighted and discussed the opportunities and challenges of the biodiversity-climate nexus 
with emphasis on mankind’s absolute dependence on nature for a sustainable future. Bi-
odiversity and climate, together with water, food and health, constitute the five nexus el-
ements included in the Nexus assessment recently undertaken by IPBES (McElwee et al., 
2025). This report is a critical evaluation of the evidence of their interlinkages, and as-
sesses the state of knowledge on past, present and possible future trends in the interlink-
ages with a focus on biodiversity and on nature’s contributions to people (NCP). Freshwa-
ter ecosystems are strongly linked to the nexus elements water, food, health, and biodi-
versity, and climate change has important and escalating interactions with all nexus ele-
ments. A nexus approach can help to avoid dangerous trade-offs and maximize co-benefits 
for humankind. 

The Climate-Biodiversity-Health Nexus (CBH) or framework is another goal-oriented at-
tempt to integrate approaches to planning and policy and support monitoring and devel-
opment of indicators for global, regional and national strategies (Newell, 2023). Nexus 
approaches recognize that challenges within each element are interconnected with other 
elements across multiple spatial and temporal scales, which means that Earth Observa-
tion data can play an important role in providing essential information. 

1.4 Biodiversity and climate change in freshwater 
ecosystems 

Freshwater ecosystems, including rivers, lakes, and wetlands, are home to a rich diversity 
of species and habitats. Over 125,000 freshwater animal species are described to date, 
which roughly corresponds to 10% of the number of species described globally (Balian et 
al., 2008).  

It is impossible to monitor all the different aspects of biodiversity on a global scale directly 
for several reasons, for example, objective metrics require subjective choices on how 
much we value one aspect of biodiversity relative to others. When determining biodiver-
sity, we therefore must rely on estimates and approximations. In addition, facilitating 
global monitoring of the extent and condition of freshwater ecosystems is a big challenge, 
even though major drivers affecting their condition are quite clear and often straightfor-
ward to assess and monitor (Revenga et al., 2005). These geospatial indicators are re-
ferred to as proxies or surrogates, because they are indicators of current threat and give 
only indirect information about actual ecological integrity. To monitor freshwater ecosys-
tems, we may thus have to rely on global, relatively easily detectable proxies, particularly 
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those measuring changes of environmental conditions, and biodiversity models that use 
these proxies to extrapolate from local field observations to a regional or global scale.  

The major impacts of climate change on inland waters include warming of rivers and 
lakes, which in turn can affect chemical and biological processes, reduce the amount of ice 
cover, reduce the amount of dissolved oxygen in deep waters, alter the mixing regimes, 
and affect the growth rates, reproduction, and distribution of organisms and species 
(IPCC, 2002; Till et al., 2019; Woolway et al., 2021). In addition, sea level rise will affect a 
range of freshwater systems in low-lying coastal regions. For example, low-lying flood-
plains and associated swamps in tropical regions could be replaced by salt-water habitats 
due to the combined actions of sea level rise and extreme sea levels during storm surges 
or tropical cyclones (Bayliss et al., 1997; Eliot et al., 1999). Plant species not tolerant to 
increased salinity or inundation could be eliminated, while salt-tolerant mangrove spe-
cies could expand from nearby coastal habitats. Changes in the vegetation will affect both 
resident and migratory animals, especially if these result in a major change in the availa-
bility of staging, feeding, or breeding grounds for particular species (Boyd and Madsen, 
1997; Zöckler and Lysenko, 2000). In addition to this, climate change affects other drivers 
and can be seen as a threat multiplier. In particular, drought or increased rainfall may lead 
to habitat change.  

Global assessments of biodiversity set focus on the impact of different drivers on biodi-
versity rather than on monitoring a change in biodiversity per se (e.g., IPBES, 2018; Mil-
lenium Ecosystem Assessment, 2005). There are also scientific reasons for this approach. 
On one hand, drivers of global environmental change usually affect most aspects of biodi-
versity simultaneously. As such, they come as close to a compound proxy for change in 
biodiversity as we can get. On the other hand, a change in environmental drivers may pre-
cede biodiversity loss by several decades. Monitoring a change in environmental drivers 
can thus give us an early outlook on future changes in biodiversity to come.  

Massive impacts of human activities on fish are very well documented (Su et al., 2021). 
Issues relating to how climate change currently is impacting freshwater fish biodiversity 
needs to be synthesized including how climate change impacts can be expected to change 
in the future. Links to mitigation measures and natural and human adaptation responses 
requires exploration with description of how such findings can help put nature on the 
path to recovery (nature-positive actions). 

Biodiversity change indicators are needed to assess trends and determine areas of urgent 
action. They represent a way to simplify the relationship between observations and the 
detected changes for policy makers so that appropriate mitigation measures can be im-
plemented with improved chances of meeting set targets. The key to a biodiversity moni-
toring system that provides useful scientific and policy output is, consequently, a system 
that assesses impacts and trends of drivers of global environmental change on biodiver-
sity.  

1.5 Remote sensing of freshwater biodiversity 
CIBER explores how Earth Observation (EO) techniques and modelling can be used to as-
sess climate impacts on freshwater ecosystems. Earth Observation (EO) is the process of 
gathering information about the Earth’s surface, waters and atmosphere via ground-
based, airborne and/or satellite remote sensing platforms. The analysis of the EO poten-
tial for monitoring of the main drivers of global environmental change (Thulin et al., 2022) 
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demonstrated that satellite observations are increasing our understanding of the dynam-
ics of water systems, their riparian borders and catchments. Satellite remote sensing is 
crucial for getting long-term global coverage and allows for time series analysis and 
change detection. It can rapidly reveal where to reverse the loss of biological diversity on 
a wide range of scales in a consistent, borderless and repeatable manner.  

Remote sensing can be done over large areas, including remote areas, and at a relatively 
high temporal resolution. Remote sensing techniques are thus ideal when monitoring 
changes in environmental variables (see Table 1) over time and across space, whose sig-
nals can be measured in the domains of the electromagnetic spectrum at a relatively large 
spatial scale (Figure 1). In doing so, EO sensors can resolve processes and objects at meter 
to kilometre scale, i.e. ecosystem level, and signatures in the optical and thermal domain, 
e.g. photosynthetic pigments. Therefore, applications are often based on ecosystem-scale 
estimates of primary production or environmental drivers, from which other parameters 
of interest may be derived. Here we describe in a very abbreviated form the state of the 
art for the most common applications for freshwater ecosystems.  

Table 1: List of lake properties, response variables (modified from Adrian et al., 2006) and related remote sensing 
indicators (modified from Dörnhöfer and Oppelt, 2016). 

Lake properties Response variables Remote sensing indicators 

Transparency Dissolved Organic Carbon Coloured dissolved organic matter 

Turbidity Suspended particulate matter 
Turbidity 
Diffuse attenuation 

Transparency Secchi depth 
Euphotic depth 

Biota Algal blooms Chlorophyll-a (phytoplankton) 
Phycocyanin (cyanobacteria) 

Phenology Time series analyses of chlorophyll-a 

Primary productivity Trophic state index 

Species composition Submerged aquatic vegetation 

Hydrology Water level Bathymetry 

Temperature Epilimnic temperature Surface temperature 
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Figure 1: Interaction between radiation, remote sensing indicators of lake ecology, and sensors (from Dörnhöfer and 
Oppelt, 2016). 

Below we summarise two key metrics of freshwater biodiversity that are detectable with 
satellite remote sensing: phytoplankton characterization (diversity, productivity, and 
phenology) and lake surface water temperature. Phytoplankton characterization is an im-
portant indicator of the biotic conditions in a lake, and lake surface water temperature 
provides valuable information on the abiotic conditions. Below, we describe state of the 
art approaches which are later referred to with regards to biodiversity knowledge gaps 
that EO can fill and subsequent scientific requirements to be addressed.   

Phytoplankton diversity, productivity and phenology  

Phytoplankton is an important component of freshwater lake ecosystems (Naselli-Flores 
and Padisák, 2023). Trends and anomalies in phytoplankton productivity or community 
composition directly impact resource availability for the entire lake system, including fish. 
The potential for characterizing phytoplankton and its growth in optically complex waters 
is basically the same as the applications known from Ocean Color remote sensing. How-
ever, the larger proportion and greater variability of Coloured Dissolved Organic Matter 
(CDOM) and Total Suspended Matter (TSM) make it difficult to determine almost all pa-
rameters. Therefore, it is currently common to use a pre-classification of optical water 
types (Moore et al., 2014; OWT; Spyrakos et al., 2018) for the production of global chlo-
rophyll-a (chl-a, or, as an aggregate, Trophic State Index TSI) data products, for which 
various blended band ratio algorithms are applied. Other than that, the optical properties 
of cyanobacteria are sufficiently different from eukaryotes to facilitate a robust 
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discrimination at moderate and high abundances (Matthews et al., 2012; Simis et al., 
2005). The optical properties of many other phytoplankton taxa are well known (Lomas 
et al., 2024; Xi et al., 2017), but an estimation of their relative abundance is only possible 
with a high level of previous knowledge of the taxa present (Zheng and DiGiacomo, 2018). 
Therefore, the great success of remote sensing based marine Phytoplankton Functional 
Types (PFT), (see roadmap in Bracher et al., 2017) has not yet been transferred to inland 
waters. However, the increasing availability of hyperspectral data has the potential to en-
able PFT retrievals in inland waters when a priori knowledge of present phytoplankton 
species is available, e.g. from emerging automated underwater microscopes and machine 
learning classifications (Maire et al., 2025). 

Phytoplankton phenology retrieval based on MERIS, MODIS or OLCI chl-a products have 
been for many lakes and lake regions (e.g., Benzouaï et al., 2020; Maeda et al., 2019; 
Palmer et al., 2015; Shi et al., 2019), and a study based on colorimetry rather than chl-a 
even identified phenology shifts across 26’000 lakes (Topp et al., 2021). However, there 
is no established standard method for lake phenology retrievals yet. This task is compli-
cated by the shorter time scales and less regular seasonal patterns at which phytoplank-
ton abundance varies, in comparison to terrestrial vegetation. We are currently investi-
gating adequate methods for phytoplankton phenology retrievals on the basis of chl-a 
products from the ESA CCI processing chain2.  

Primary production can be modelled from a combination of two EO products, namely pig-
ment concentration or absorption, and diffuse absorption or Secchi depth. Together with 
estimates of downwelling irradiance and a parameterization of photon use efficiency, 
photosynthetic light availability can then be modelled, in theory, at all depths and wave-
lengths, allowing for accurate retrievals based on semi-analytical models (Silsbe et al., 
2016). In practice, simplified models assuming uniform spectral attenuation, vertical gra-
dients and photon use can be used when previous knowledge of these variables is not 
available (Sayers et al., 2020). One main limitation for the broad use of such products is 
however that reference measurements of primary production require incubation of car-
bon isotopes during long periods, they are hence laborious and scarce, in particular in 
comparison to chl-a measurements. Operational products for lakes are therefore, to our 
knowledge, currently not available not even at the scale of regions or individual lakes. 

Lake surface water temperature and thermal structure 

Lake Surface Water Temperature (LSWT) is an Essential Climate Variable that can be rou-
tinely estimated using surface emitted radiance around 11 and 12 μm (A/ATSR, SLSTR, 
TIRS). Future satellites will explore also adjacent thermal infrared wavelengths, e.g. 8-9 
μm in case of the French-Indian mission Trishna or the Copernicus Expansion Mission 
LSTM. Global and regional operational LSWT products are available from a range of 
sources, most prominently Copernicus and ESA CCI. Their main limitation is a spatial res-
olution of 1 km, which limits the application potential to the few thousand largest lakes in 
the world. 100 m resolution LSWT is distributed within Landsat Collection 2 products, but 
subject to longer revisit times of eight days for Landsat-8 and Landsat-9. 

Water temperature largely determines lake water stratification, and stratification is key 
to near-surface nutrient availability and deep-water oxygen renewal. This is why vertical 
temperature gradients are a key information in lake research. However, LSWT only 

 
2 https://www.bgbphenology.com/ 
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represents the top micrometers of seawater, but can be measured via satellite-based re-
mote sensing, which why it was predominantly used for decadal warming trend estima-
tions. But lately, it was reported how seasonal stratification and mixing in large temperate 
lakes can be estimated by means of a 4° LSWT threshold representing the temperature of 
maximum density (Fichot et al., 2019). This threshold, occurring as a longitudinal thermal 
bar in very large lakes, indicates vertical mixing when it passed the entire lake during a 
given winter. With this approach, 20 lakes that experienced mixing anomalies in the past 
20 years (e.g. from dimictic to oligomictic) could be identified from the CCI LSWT products 
(Calamita et al., in preparation). Further detail on vertical temperature gradients in lakes, 
e.g. the thermocline depth, requires 1D hydrodynamic models. LSWT from EO can make a 
significant contribution to the calibration and validation of such models. 

1.6 Conceptualising fish community habitat templates 
Habitat templates (Kruk and Segura, 2012) aim to describe the features of the biotic and 
abiotic environment that support the survival, growth and reproduction of fish popula-
tions – usually for a given species. A template is a way of summarizing the necessary en-
vironmental conditions, or habitat properties, needed by a species (or higher taxonomic 
aggregations) to meet their physiological needs, to be able to reproduce, display appro-
priate behaviour and fulfil their life cycles. This is essentially a description of the physical, 
chemical, structural and biological features of an ecosystem (such as a lake) - across space 
and time – that are required and therefore can act as filters (necessary but not always 
sufficient) for determining whether a species can live there or not. 

For fish, key abiotic environmental gradients include aspects of the physical and chemical 

environment: temperature, light, nutrients, water chemistry (conductivity and pH), flow 

or velocity of the water, mixing regimes, oxygen availability, depth, and the substrate or 

structure of the lake bottom (Cheng et al., 2012; Matuszek and Beggs, 1988). Lake struc-

ture can include the underlying geological formation, hydrodynamic impacts from ba-

thymetry, the sediment or substrate type. 

Fish also respond to the biotic environment in which they find themselves – characterized 

by the abundance of resources, competitors and predators. For many lake fish, resources 

consist of zooplankton species, community composition and their abundances, or the den-

sity of benthic macroinvertebrates (mussels, insect larvae, snails etc.). Fish populations 

can also be strongly controlled by fish predators and therefore may be closely related to 

predator density.  Competition with other fish species within the same feeding guild may 

also reduce abundances. Lake productivity, often reflected in measures of chlorophyll-a, 

total nutrient concentrations, or “trophic state” also provide gross estimations of the en-

ergy available to the food web and consumers via internal carbon fixation and trophic 

transfer. However, how much of the total energy is available to individual fish taxa de-

pends on the ecological context: which species contain the energy, how edible and nutri-

tious they are, and how much energy is transferred across trophic levels. Finally, disease 

and parasitism can also be strong drivers of fish dynamics.  

Fish interact with these environmental gradients in ways that are determined according 
to their own biological traits, behaviours, life history and physiology. These include as-
pects such as body size, growth rates, metabolic demands, feeding strategies, 



 

 

 

 

 11 / 48 

reproductive strategies and vulnerability to predation. Different environmental gradients 
may influence fish at different temporal and spatial scales. For example, many species may 
have similar thermal affinities and therefore co-occur across regional spatial gradients 
(i.e. across lakes), but they may partition food resources that vary across the benthic and 
pelagic environments of the same lake. With remote sensing-based products alone, we 
will inevitably be constrained to consider variability in the upper layer of the water col-
umn. We cannot characterize depth gradients that vary within lakes or on diel time scales, 
though they may be important for fish distributions and abundance. To supplement this 
EO constraint, we employ 1D lake models to capture depth-dependent gradients. 

We will most likely constrain our analysis to variables observed at the whole lake ecosys-
tem scale, and which vary on regional spatial and seasonal to interannual temporal scales. 
These may include effects of bathymetry, productivity, climate, mixing regime and water 
column stability, total organic carbon, dissolved oxygen, turbidity, total organic carbon, 
light availability, spatial connectivity, and land-use. 

We can already hypothesize that we may observe key gradients of lake fish habitat, affect-

ing the species which are present, and the composition of communities (Mehner et al., 

2021). Gradients of importances will likely include measures of productivity and trophic 

state (i.e. oligotrophic and clear to eutrophic and turbid, (Heino et al., 2010)). Further-

more, lake morphology can interact strongly with lake productivity. These two gradients 

together are thought to shape food web structures, determining whether they are domi-

nated by benthic or pelagic energy pathways, dominant foraging modes (planktivores or 

benthivores/plant-associated omnivores), and the body size and biomass distribution. 

Additionally, climate, lake size, basin depth and shape will control whether or not a lake 

is mixed, how often and for how long. This influences gradients of temperature and oxy-

gen, and therefore the balance and extent of benthic versus profundal habitat. It will of 

course determine how much of the water volume of a lake is habitable, and which species 

can survive (e.g. in colder climates or under lower oxygen levels (Tonn, 1990)).  

Some work on European fish has been done to show that particular traits of fish, or “trait 

syndromes” are associated with particular and dominant environmental conditions in 

lakes. For example, fish in small, shallow, or often disturbed lakes are often occupied by 

opportunistic fish species with rapid maturation, high fertility and low juvenile survivor-

ship. Large, more seasonal systems, with predictable and highly productive periods, have 

fish with seasonal spawning whose timing match peak lake productivity – these are often 

larger bodied and more fecund fish species. Finally, stable and more structured lakes of-

ten have fish that are less fecund but invest more in their offspring (Blanck et al., 2007).   

One example is a study in German lowland lakes where Mehner et al. (2005) found that 

community composition was largely explained by depth and chlorophyll-a, with deep cool 

lakes being dominated by vendace (Coregonus albula), perch (Perca fluviatilis) and smelt 

(Osmerus eperlanus), while shallower, more productive lakes were dominated by cypri-

nids. This was reiterated, in a second paper  (Mehner et al., 2021) suggesting that lake 

depth and geography drive compositional changes in which cool, deep, less productive 

lakes are dominated by coregonids and salmonids, while warm, shallow, more productive 

lakes are dominated by cyprinids or percids. In a Finnish study (Heino et al., 2010) across 

multiple ecoregions, cool, deep lakes contained Arctic charr, salmonids and grayling, 

whereas more tolerant species were present in more shallow, nutrient rich lakes: e.g. 
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crucian carp. Perch, roach, ruffe and pike were characterized as generalists, and therefore 

not good indicators of any particular lake type. Indeed, a number of lake indices have been 

proposed that describe the status of the lakes based on the composition of the fish com-

munities within them (Arranz et al., 2016; Blabolil et al., 2017; Emmrich et al., 2014; 

Specziár and Erős, 2020). Nevertheless, they often recapitulate the observed importance 

of coregonids in deep, cool, stratified oligotrophic lakes as compared to the dominance of 

cyprinid-percids in warmer, shallow, more eutrophic lakes. Finally, a species distribution 

modelling approach of 19 fish species in 772 European lakes showed that the abiotic en-

vironmental and spatial predictors contributed to the presence and absence of fish spe-

cies, while lake size and productivity contributed more to the biomass of the community 

(Mehner et al., 2021).  

2 Scientific requirements 
The NASA Biological Diversity and Ecological Conservation program elements have re-
leased a detailed report on the value of remote sensing for understanding, monitoring, 
and forecasting biodiversity and supporting decision making. Developed by a working 
group of experts, the report demonstrates the value of remote sensing for biodiversity, 
explores new ideas, and identifies potential program opportunities for the next decade 
Geller et al., (2022). To predict changes in biodiversity and ecosystem services and to pro-
vide the best possible information to decision makers, they make several recommenda-
tions. These include improved integration of EO in ecological forecasting, coordination 
with stakeholders, iterative updating of forecasts, use of multisensor data and increased 
interaction with social scientists. They also called for the development of a shared, sus-
tainable community infrastructure to facilitate ecological forecasting.  

The ESA Scientific Strategy (European Space Agency, 2024) prioritizes understanding cli-
mate-biodiversity feedback, particularly how warming waters and altered hydrological 
regimes impact aquatic species distributions. ESA explicitly recognizes the monitoring of 
Ecosystem health as one of six core thematic objectives, with freshwater biodiversity con-
stituting a critical component of this mandate. The emphasis is on understanding Earth 
system feedback mechanisms through advanced satellite monitoring, particularly focus-
ing on aquatic ecosystems where biodiversity loss rates exceed those of terrestrial sys-
tems by 2-3 times (Haase et al., 2023). The EO science strategy specifically requires inte-
grating EO-derived parameters like water temperature dynamics, sediment transport 
patterns, and wetland extent changes with biodiversity models and address critical 
knowledge gaps identified in recent studies showing stagnating recovery of European 
freshwater ecosystems despite restoration efforts (European Environment Agency, 2018; 
Haase et al., 2023). The ESA Scientific Strategy will be further analysed as the project pro-
gresses (e.g. in WP3) with focus on three of the six scientific themes, namely the Water 
cycle (ST-1), Ecosystem health (ST-IV) and Interfaces & coupling in the Earth system (ST-
VI) and their interconnectedness. 

In addition to the description in section 1.3 of the scientific outcomes of the IPBES-IPCC 
workshop, Pörtner et al. (2023) highlights the need for an integrative approach to 
strengthening of biodiversity in all systems and to achieve better detailed understanding 
of how climate and biodiversity is currently interacting and might do in the future. 
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The EU Biodiversity Strategy 2030 with the Nature Restoration Regulation, “sets binding 
targets to restore degraded ecosystems, in particular those with the most potential to cap-
ture and store carbon and to prevent and reduce the impact of natural disasters.” Based 
on the assessments of European ecosystem condition, measures for restoration and pro-
tection of habitats and species and implementing the target of restoring 25,000 km of free-
flowing rivers by 2030 (European Commission, Joint Research Centre and EEA., 2021; Pa-
ganini, 2022) have been included which requires spatial information and monitoring of 
freshwater ecosystem extent and condition. These strategies and laws also seek to con-
tribute to achieving the EU’s climate mitigation and climate adaptation objectives of the 
EU Strategy on Adaptation to Climate change (European Commission, 2021). It seeks to 
improve knowledge and data which is a key priority for building European climate resili-
ence under the European Green Deal (European Commission, 2019). 

Freshwater biodiversity constitutes a key indicator for achieving multiple UN Sustainable 
Development Goals (6, 13, 14 and 15) and information that can be utilised to obtain global 
understanding of changes to biodiversity are much needed. 

At a global level the 2022 CBD Kunming-Montreal Global Biodiversity Framework (GBF) 
and monitoring framework with targets and indicators, aims at “holistically capturing the 
state and trends of biodiversity, interactions of nature and people, along with the drivers 
and pressures that are causing biodiversity loss and ecosystem degradation” (Kim et al., 
2023). As it recognises inland water / freshwater ecosystems as a realm of its own it can 
help sustain water-related ecosystems and ecosystem services, as well as support SDG 6 
and other Sustainable Development Goals. GBF targets relevant to the CIBER project in-
clude “Ensure Sustainable, Safe and Legal Harvesting and Trade of Wild Species” (Target 
5), “Manage Wild Species Sustainably To Benefit People” (Target 8) and “Manage Wild 
Species Sustainably To Benefit People” (Target 9). By focusing on freshwater biodiversity 
indicators that in turn can inform GBF component- and complimentary indicators, there 
is potential to also link with the GEO BON essential variables frameworks, i.e. Essential 
Biodiversity Variables (EBVs) and Essential Ecosystem Services Variables (EESVs). Such 
indicators that are scalable and interoperable for multiscale analyses have the potential 
to play an important role to prioritise actions and to monitor progress towards reaching 
goals. In addition, they may inform the UN SEEA EA framework to consolidate national 
monitoring systems nationwide and account for natural capital including converting 
growth-oriented economic models to more sustainable and well-being-oriented models  
(United Nations, 2024). 

The Science Agenda and Roadmap of BIOMONDO (Lever et al., 2024) fully endorsed the 
recommendations of Geller et al. (2022) and moved forward by outlining research gaps 
for freshwater biodiversity remote sensing related to the identified knowledge gaps in-
cluding mutual dependencies that require specific consideration. In the sections below we 
emphasise the complex and multiple connections between climate and biodiversity. 

The research priorities and scientific requirements derived from the knowledge gaps are 
summarised under the following headings below: 

• Freshwater ecosystems and habitats 
• Thermal structure 
• Phytoplankton diversity, phenology, and productivity 
• Ecosystem disturbances, regime shifts, anomalies, and resilience indicators 

(strong links to climate change and mitigation effects) including attribution of bd 
change 
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• Biodiversity – climate change feedback system 

The relevance of the knowledge gaps and challenges for the work to be undertaken in 
CIBER, are further described in Chapter 3 with specific analysis to determine the ones 
with the highest priority. 

2.1 Freshwater ecosystems and habitats 
Geospatial information about the location, size, and geographic relations like connectivity 
of freshwater ecosystems and habitats are needed to assess their status and monitor 
changes with regards to biodiversity policy targets and goals. However, existing classifi-
cation schemes and typologies have evolved over time with different objectives, and they 
are neither optimized for linking to global biodiversity assessments, nor suited to take full 
advantage of developments in remote sensing of recent years (e.g. MAES, IUCN and EUNIS 
classification schemes). With an increasing emphasis on and need for development of 
EBVs to inform biodiversity indicators, some of the typologies have recently been revised 
or are under revision. This will hopefully leverage the use of remote sensing and model-
ling. 

The below listed information and knowledge are needed to monitor freshwater biodiver-
sity in rivers and streams, lakes, reservoirs and ponds, wetlands: 

• Time series data/maps of freshwater habitats (with flexible classifications that 

allow for global and regional/local utility, with appropriate resolution and accu-

racy/uncertainty estimates) to determine short-term and long-term trends 

• Transparent connection between biodiversity (species records, abundance and 

distribution), habitat requirements (temperature, hydrology, depth etc) and habi-

tat and ecosystem characteristics (e.g. structure, function) 

• Scalable connection between habitat types3 (e.g. EUNIS trophic state and vegeta-

tion) and ecosystem types (functional not trophic state) 

Certain elements of the required information can be provided by remote sensing, of which 
some is already in use for determining, e.g. extent of lakes, rivers and streams, some as-
pects of water quality (trophic state, LCLU and change, net primary production, turbidity, 
chl-a), hydrographics and physical characteristics from sonar (depth), and extent attrib-
utes from radar. 

EO based methods to map and monitor changes in the spatial extent of freshwater bodies 
are readily available (e.g., Verpoorter et al., 2014) and are highly relevant, in particular in 
permafrost regions and in arid climate zones where freshwater bodies may appear or dis-
appear due to climate change, as well as in river basins where dams are placed affecting 
water flows and wetland formation. But there is no global dataset that classifies freshwa-
ter bodies according to lower classification levels, such as trophic state and depth, which 
are required for example in the EUNIS classification scheme.  

 
3 From EEA, https://www.eea.europa.eu/en/topics/in-depth/biodiversity/an-introduction-to-habitats: A 

habitat or a group of related habitats can be considered an ecosystem. Ecosystems are dynamic 
complexes of plant, animal and micro-organism communities and their non-living environment, which 
interact to form functional units. 

 

https://www.eea.europa.eu/en/topics/in-depth/biodiversity/an-introduction-to-habitats
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To determine freshwater habitats and ecosystem classes is inherently complicated be-
cause of the position within the terrestrial realm where changes to the upstream land-
scape processes, catchments and hydrography can affect extent, structure, function and 
condition. Hydrography can be derived from spaceborne elevation data (Lehner et al., 
2008) but other aspects have not been fully assessed when it comes to the support of EO 
and remote sensing. In condition assessments both environmental quality (physical and 
chemical quality) and ecosystem attributes (biological quality) are considered. These as-
pects also provide an opportunity for the expanded use of EO but may need to be explicitly 
required by framework guidelines to reach full potential.  

To achieve a global coverage that can give comparable results and a better understanding 
of whether quality status or climate change mitigation measures are having desired out-
comes, methods employed need to be flexible but transparent and work at different 
scales, which are design principles of the new IUCN Ecosystem typology. An important 
scale aspect is the relationship between habitats and ecosystems where the latter often 
consists of several habitats and different parameters have been used to characterise them 
depending both on geographic location but also on the resolution or grain of the input 
data. For wetland classifications this is especially difficult as many wetland habitats are 
complex with properties that can be assigned to combinations of terrestrial, freshwater 
and marine biomes. 

As the ability to map the extent of and discriminate between different habitats and eco-
systems has improved, and emphasis on biodiversity monitoring aspects has increased; 
the condition of the habitats and ecosystems is receiving growing attention. This is espe-
cially important for linking with the expanding field of ecosystem accounting and raises 
issues relating to the notion of high biodiversity per se as it is not always a good indicator 
of habitat and ecosystem condition – or how to monitor negative change in ecological sta-
tus not reflected by biodiversity (number of species).  

2.2 Thermal structure 
Lake water temperature is linked directly to warming air temperatures, although it was 
reported that lake surface temperatures warm only at a rate of 0.24° per decade, while 
surface air temperatures increase at a rate of 0.29° per decade (Tong et al., 2023). The 
retrieval of LSWT from satellite EO is rather straightforward and accurate with uncertain-
ties in the order of 1°. But LSWT is not an optimal environmental variable for aquatic bi-
odiversity, which requires information on bulk surface (epilimnetic) temperatures or ver-
tical stratification. Both can be achieved through skin-to-bulk conversion (e.g., Wilson et 
al., 2013) or thermal bar mapping approaches (Fichot et al., 2019), respectively, but fur-
ther research is needed to make these tasks optimal and operational, and other variables, 
such as thermocline depth, require complementary model simulations. 

Assessment of impacts of changes in thermal stratification and lake mixing regimes must 
address impacts on primary producers as well as impacts on consumers. Concerning the 
former, it should be investigated how changes in the seasonality of epilimnetic tempera-
ture and vertical mixing are related to phytoplankton growth by contrasting them with 
currently available TSI, or, preferably, gap filled chl-a products prior to temporal aggre-
gation. In doing so, it should be considered that temperature and productivity may be re-
lated positively when lake water temperature is limiting, but negative when nutrient 
availability in the epilimnion is limiting (Bouffard et al., 2018). Furthermore, it must be 
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taken into account that short term weather phenomena related to solar irradiance and 
wind forcing can cause algae blooms that exceed even the seasonal dynamic range (Irani 
Rahaghi et al., 2024). These combined effects, and the differences in their relative contri-
butions and temporal and spatial scales, complicate systematic assessments significantly, 
while antecedent case studies with a focus on individual lakes and events are relatively 
straightforward. 

Assessments of the impacts of extreme climate events, e.g. heatwaves and massive rainfall 
events, on biodiversity variables, can hence be understood as special cases if they focus 
on response variables related to primary producers.  

2.3 Phytoplankton diversity, phenology, and 
productivity 

Phytoplankton form the foundation of the aquatic food web, and its photosynthetic pig-
ments allow direct retrievals of phytoplankton biomass. IF spectral resolution is suffi-
ciently high, accessory pigments even enable to assess the  diversity on different taxo-
nomic levels from species to phylum (Maire et al., 2025), phenology and productivity us-
ing optical EO data. Therefore, phytoplankton is a key topic in aquatic remote sensing. The 
knowledge gaps relating to ecosystem functioning address various aspects of this topic, 
including phytoplankton-related links between ecosystem functioning and environmen-
tal variables. The dependencies of these knowledge gaps are depicted in Figure 2Figure 2. 

 

 

Figure 2: Hierarchy of research gaps related to phytoplankton diversity, phenology and productivity (updated from 
BIOMONDO Science Agenda and Roadmap, Lever et al., 2024). Starting from L2 product but could be replaced by L3 CCI 
lakes product. The knowledge gap numbering refers to the numbering in Table 2. 

Net primary productivity and phytoplankton phenology (based on chl-a products) are 
proven applications of EO data. But the comprehensive upscaling of phenology products 
is limited to, e.g., the US-wide lake browning (Topp et al., 2021), and global, full mission 
phytoplankton phenology is missing. The upscaling of PP retrievals is limited to a simple, 
empirical approach for the eleven largest lakes in the world (Sayers et al., 2020). 
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Phytoplankton phenology products are currently in development at Eawag4, based on CCI 
lakes chl-a products from MERIS and OLCI provided by the Plymouth Marine Laboratory 
(PML). These products are well validated, which is why only limited validation work is 
necessary. Contrariwise, PP products from analytical algorithms (e.g., CAFE model; Silsbe 
et al., 2016) still need comprehensive validation and high-quality PP reference measure-
ments are much scarcer than chl-a measurements. However, the EO input products to PP 
algorithms (phytoplankton absorption, diffuse attenuation, downwelling irradiance) are 
well established, and operational PP products could be used far beyond the biodiversity 
community (e.g. in carbon assimilation models).  

Lake Phytoplankton Functional Types (PFT) describe highly diverse phytoplankton taxa, 
which play different roles within ecosystems (e.g. as food for other species) and within 
the carbon cycle (e.g. the shells of some phytoplankton species may sink to the bottom 
after death, while others release a larger fraction of carbon back into the atmosphere). 
Different species may also respond differently to changing environmental conditions, and 
some species produce toxins that are harmful for ecosystems and water quality (e.g. cya-
nobacteria). Operational products are until now limited to cyanobacteria (e.g. CyanoAlert 
and CyanoLakes), which can be identified robustly by means of spectral reflectance fea-
tures in red wavelengths (Matthews and Odermatt, 2015; Simis et al., 2005; Wynne et al., 
2010). The use of cyanobacteria products for a dedicated phenology product is currently 
under development for ESA Lakes CCI. In addition, PACE, launched in 2024 is significantly 
improving the potential to distinguish PFT in lakes that are sufficiently large for the use 
of 1 km spatial resolution data (Dierssen et al., 2023). Methods to exploit the potential of 
the first daily hyperspectral satellite data exist already (e.g., WASI; Gege, 2014), and spec-
tral absorption properties of some common lacustrine and marine algae taxa are available 
(e.g., Lomas et al., 2024; Soja-Woźniak et al., 2022), although further lab analyses are 
needed for less common lacustrine taxa and to clarify the sensitivity of spectral absorp-
tion properties to environmental conditions (Göritz et al., 2017).  

Integrating trophic state from EO in models is a task that can be implemented on the levels 
of different parameters that are available from EO and ecosystem (water quality) model 
parameters, as well as in different work steps. At the current stage, readily available 
trophic state EO products can be used, and existing assimilation techniques could be used 
to connect these products with existing model simulations.  

2.4 Ecosystem disturbances, regime shifts, anomalies, 
and resilience indicators 

While the focus of section 2.3 is on the production of new time series (i.e. of lake primary 
productivity and lake PFT) and the extraction of seasonal dynamics (i.e. phenology), this 
section focusses on the cases in which these time series or dynamics show a substantial 
change, either in the form of longer-term regime shifts or relatively short-lived but large-
scale anomalies. This is important because shallow lakes are known to typically show (at 
least) two alternative states, i.e. a clear-water state with submerged macrophytes and pis-
civorous fish, or a turbid state dominated by phytoplankton. Shifts between these states 
may occur relatively suddenly under the influence of gradual changes in nutrient inflows 

 
4 www.bgb-phenology.com 
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when ‘tipping points’ are passed (Scheffer et al., 1993). Deeper lakes may exhibit shifts in 
mixing regimes under the influence of climatic changes (Calamita et al., 2024), while the 
high rates of herbivory in freshwater systems makes them particularly susceptible to re-
gime shifts arising from changes in biotic interactions (which, e.g., are dependent on phe-
nology; Lever et al., 2023)). Anomaly detection is important because they are expected to 
increase in size and frequency under the influence of climatic changes with potentially 
catastrophic consequences for species and biodiversity. Such extreme events may also 
trigger regime shifts. At the same time, such anomalies may provide important infor-
mation about the resilience of ecosystems under the influence of global environmental 
change. Resilience may be, among other possibilities, defined as the speed at which a sys-
tem recovers from disturbances (i.e. engineering resilience), or as the amount of change 
a system can handle without going through a regime shift (i.e., ecological resilience; Hol-
ling, 1996). Loss of both types of resilience tends to go hand-in-hand and, therefore, an 
increasingly slow recovery from disturbances (e.g. after anomalies) can be used as an in-
dicator of the loss of both types of resilience. Changes in the statistical properties of time 
series (e.g. increased variance and autocorrelation) may provide an indication that the 
speed of recovery from disturbances is slowing down. Monitoring of lake resilience using 
such ‘resilience indicators’ is important, in particular because it is not always easy to de-
termine which environmental driver is undermining ecosystem resilience (Scheffer et al., 
2009; van Nes and Scheffer, 2007).  

Knowledge gaps on ‘lake regime shifts and anomaly detection’ and ‘lake resilience moni-
toring and resilience indicators’ are the key knowledge gaps related to the here discussed 
research themes. Dependencies on, and dependencies of other knowledge gaps are shown 
in Figure 3. This figure also shows the large number of gaps that may need to be filled to 
attribute observed regime shifts to environmental changes. When it is difficult to do at-
tribution (e.g. because there are many drivers of change) direct monitoring of resilience 
indicators might be a particularly important alternative. 
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Figure 3: Hierarchy of knowledge gaps related to lake regime shifts, anomaly detection, and resilience monitoring. Ex-
isting variables are shown in black boxes, ecosystem functioning knowledge gaps are shown in white boxes, and 
knowledge gaps linking ecosystem to environmental variables are shown in grey. For more detail, see BIOMONDO Sci-
ence Agenda, (Lever et al., 2024) 

Studying regime shifts requires knowledge of when and where they may have happened 
which requires data preparation (e.g. gap filling) and decomposition of time series in sea-
sonal, trend, and residual components. A wide variety of methods exist to do this 
(Bathiany et al., 2024). One of the most commonly applied methods when using satellite 
data is BFAST (Verbesselt et al., 2010) and the more recent BEAST (Zhao et al., 2019), 
although the most appropriate method depends on the nature of the data. This, in turn, 
allows for the detection of so-called ‘change points’, i.e. where a sudden change in the sta-
tistical properties of a time series occurs. To do this, classical change-point detection al-
gorithms are increasingly often combined with supervised classification models to filter 
out false positives (Bathiany et al., 2024). Following earlier work on case studies (e.g., 
Gsell et al., 2016), a first global dataset of regime shifts, trends, and variability in lakes was 
produced by Gilarranz et al. (2022). This dataset can, however, be extended to include 
more recent years (e.g. using OLCI data, the current dataset uses MERIS only), to include 
more lakes, and to use other time series data (e.g., chl-a estimates, instead of TSI, and 
other spatial or temporal resolutions). When knowledge gaps related to Lake PP and PFT 
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have been addressed primary productivity and PFT time series may be good candidates 
as well. 

Anomaly detection is typically used to study ‘disturbance regimes’ in their own right and 
are often characterized by their size (i.e. the area affected), frequency, and the ‘severity’ 
of the anomaly (Senf and Seidl, 2021). It is expected that the values of these anomaly met-
rics will increase as the frequency and severity of extreme climatic events escalates. There 
is a wide variety of anomaly detection algorithms available (e.g. k-nearest neighbours 
mean distance, kernel density estimates, a recurrence approach, and ensemble ap-
proaches that combine them). For the detection of anomalies, the method to extract the 
key features (e.g. the seasonal, trend, and residual components as discussed above) may, 
however, be more important than the specific anomaly detection method chosen (Flach 
et al., 2017). (Changes in) anomalies can be studied for all the aforementioned time series 
as well as for metrics of phenology (after addressing knowledge gaps for lake phytoplank-
ton phenology). 

There is a rapid increase in studies that use of EO to monitor changes in the resilience of 
terrestrial ecosystems (e.g., Forzieri et al., 2022). For lakes, similar studies rely mostly on 
in-situ data (Carpenter et al., 2011; Gsell et al., 2016), with few exceptions that use EO 
(Gilarranz et al., 2022). Extracting resilience indicators from lake phytoplankton time se-
ries thus constitutes an important opportunity. To validate obtained results, known cases 
with and without regime shifts may be used. It might be more challenging to extract clas-
sical indicators of resilience (e.g., as in Scheffer et al., 2009) for lakes, because the seasonal 
dynamics of lakes are more complicated than those on land. Existing methods might 
therefore need to be updated to take this into account. Alternative methods could also 
involve the development of a metric of recovery after anomalies, or machine learning ap-
proaches (e.g., as in Bury et al., 2021), to close this gap. 

2.5 Predicting responses of biodiversity to climate 

change 

Climate change alters freshwater biodiversity by shifting thermal niches, restructuring 

communities, reducing cold-adapted species, and promoting warm-affiliated or invasive 

taxa (Blois et al., 2013; Walther et al., 2002). To understand these responses, we link ob-

served species distributions to environmental gradients and project how these relation-

ships may change under future climates. 

Two key scientific gaps need to be addressed: (1) it is unclear how well EO-derived lake 

variables capture habitat constraints in data-poor regions (Heino et al., 2009) and (2) the 

ecological signal retained when modelling at genus or family level instead of species level 

remains poorly tested (Hortal et al., 2015). Combining fish occurrence records with 

EO-based descriptors provides a consistent basis for evaluating these relationships. 

Species Distribution Models (SDMs), such as MaxEnt and Hierarchical Modelling of Spe-

cies Communities (HMSC), statistically link species occurrences to environmental condi-

tions for estimating habitat suitability and predicting biodiversity change (Royle et al., 

2012; Tikhonov et al., 2020). Known relationships between species occurrences and past 

and current environmental conditions allow us to predict where species may occur in un-

sampled habitats and to forecast how their distributions may shift under future climate 
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scenarios (Piirainen et al., 2023). Their reliability depends on assumptions about niche 

stability (Guisan and Thuiller, 2005) dispersal ability, and the adequacy of current occur-

rence data (Elith and Leathwick, 2009). 

We will use presence-only GBIF data to create descriptions of fish habitat preferences. 

Aggregation to genus or family level will be applied when species-level data are sparse, 

when taxonomic resolution is unreliable, or when environmental predictors do not sup-

port species-level modelling. 

Climate projections will then be used to estimate the environmental conditions of CCI 

lakes, incorporating all relevant biotic and abiotic variables that can be modelled under 

future climate scenarios, including thermal, optical, hydrological, biogeochemical, and 

phenological descriptors that structure freshwater habitats.  

These variables may be derived from combination of EO-based products, physical lake 

models, biogeochemical models, and climate model outputs. To ensure that SDM predic-

tors reflect ecologically meaningful habitat dimensions, species-level habitat require-

ments derived from traits, literature, and occurrence data must be explicitly linked to the 

EO-based lake descriptors as summarised in Table 1. Together, they allow consistent cli-

mate-driven projections for CCI lakes across multiple potential climate scenarios and 

timeframes.  

We can then use the SDM approach to project the distributions of fish genera or families 

for lakes for which we do not currently have adequate data. Furthermore, we will project 

species distributions forward in time. Such approaches will also allow predictions of how 

biodiversity hotspots may move over the landscape under various scenarios of future cli-

mate. With a knowledge of species habitat preferences and traits, we can also subset our 

projections to observe how cold-adapted or stenothermic taxa will be affected by climate, 

versus, how more generalist (eurytherm) or warm stenothermic taxa will be affected.  

The resulting information on shifting hotspots and dispersal corridors will support con-

servation planning by highlighting areas where connectivity is essential for enabling cli-

mate driven range adjustments. This approach allows for coherent and scalable anticipa-

tion of freshwater biodiversity responses to climate change.  

To support the objectives of CIBER, the scientific requirements can be summarised as fol-

lows: (1) environmental predictors must capture the key thermal, hydrological, and bio-

chemical gradients that structure freshwater habitats; (2) occurrence and environmental 

datasets must be harmonised at spatial and temporal scales relevant for detecting cli-

mate-driven ecological change; (3) modelling approaches must quantify uncertainties 

arising from scenario divergence, data limitations, and model structure; (4) and outputs 

must support assessments of species-level and community-level responses, including 

identification of vulnerable taxa, shifts in functional composition, and the movement or 

loss of biodiversity hotspots. 
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3 Knowledge gaps and challenges 

3.1 Relevance of BIOMONDO knowledge gaps 
The BIOMONDO science agenda (Lever et al., 2024) included a review of comprehensive 
lists of generic biodiversity knowledge gaps presented in the IPBES Global Assessment on 
biodiversity and ecosystem services (IPBES, 2019) and selected scientific publications 
(e.g., Harper et al., 2021; Maasri et al., 2022). From these lists, the BIOMONDO project 
extracted 23 knowledge gaps in aquatic biodiversity research and conservation activities 
that can be filled using EO data products (Table 2). The expected relevance of these 
knowledge gaps for CIBER is indicated in the table and further detailed in the subsections. 
We do not expand on the descriptions of knowledge gaps relevant to wetlands and river 
deltas, as these are beyond the scope of the lake ecosystems.  

 
Table 2 List of knowledge gaps in the BIOMONDO science agenda and their relevance for the CIBER project. Knowledge 
gaps considered high priority are highlighted in bold. 

No. Knowledge gap Relevance in 
CIBER 

Ecosystem structure  

1 Freshwater habitat type and extent Low 

2 River delta extent None 

3 River habitat connectivity High 

Ecosystem functioning  

4 Lake net primary productivity Low 

5 Lake phytoplankton taxa High 

6 Lake phytoplankton phenology High 

7 Regime shift and anomaly detection High 

8 Monitoring lake resilience indicators Low 

9 Using EO-derived PP indicators in food web models None 

10 Impacts of phytoplankton phenology on other biodiversity variables High 

11 Impacts of net primary productivity on other biodiversity variables Low 

12 Impacts of anomalies in phenology and net primary productivity on other biodiversity variables High 

Interlinkages between ecosystem structure and functioning  

13 Monitoring the spread of invasive species None 

Environmental variables  

14 Impacts of hydraulic engineering on sedimentation processes None 

15 Impacts of land use/land cover on nutrient inflows Low 

16 Impacts of watershed precipitation on nutrient inflows Low 

17 Monitoring changes in thermal stratification and lake mixing regimes High 

Interlinkages between ecosystem and environmental variables  

18 Attribution of changes in wetland and river delta formation None 

19 Impacts of thermal stratification and lake mixing on PP High 

20 Attribution of changes in lake phytoplankton phenology None 
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21 Attribution of changes in lake trophic state None 

22 Impacts of extreme weather, e.g. heatwaves and thunderstorms Low 

23 Impact of the hydroperiod of wetlands on biodiversity variables None 

 

3.1.1 Ecosystem structure 

Only a limited level of detail on freshwater habitat types and their extent is available 
at continental scale. Among the criteria considered in the EUNIS habitat classification for 
standing surface waters, ice cover, water surface extent and trophic status are included 
as dynamic variables in the Lakes CCI product suite (Figure 4). Static bathymetry is also 
available for the Lakes CCI water bodies. Other variables, such as salinity or properties of 
the littoral zone are not available. And while available variables will be considered, CIBER 
will not contribute to an improved characterization of ecosystem structures as required 
for the corresponding EBV class. The overall relevance of this knowledge gap in CIBER is 
thus considered low. 

 

 
Figure 4: EUNIS habitat classification criteria for ‘Surface standing waters’ (type “C1”; from Davies et al., 2004). Level C 
is ‘Inland waters’, with C2 being ‘Surface running waters’ and C3 ‘Littoral zone of inland surface water bodies’. 

Monitoring the extent of river deltas was considered an important knowledge gap in 
BIOMONDO, because they are important wetland habitats, and variations in their extent 
should be attributed to changes in sea level rise, subsidence and changes in river sedi-
mentation. Since CIBER focuses on impacts on lakes rather than wetlands, a dedicated 
analysis of river deltas is not planned.  

River habitat connectivity is a key prerequisite for fish migration, and hence for the 
main impact variable considered in CIBER. Connectivity is a combined spatial property 
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based on river morphology, the construction of dams and the presence of fish ladders. 
Various geospatial datasets exist for these individual components. But an aggregated con-
nectivity product is to our knowledge missing, and its feasibility requires dedicated inves-
tigations of ancillary data sources. The relevance of this variable for CIBER is considered 
high, but connectivity data are not available for the whole study region. 

3.1.2 Ecosystem functioning 

Lake net primary productivity, phytoplankton taxa, phytoplankton phenology are 
important indicators of the base of the food web in lake ecosystems, and past studies con-
firmed that they can be estimated from optical EO products. However, lake primary 
productivity studies are limited to selected lakes (e.g., (Sayers et al., 2020), phytoplankton 
taxa retrievals focus mostly on separating cyanobacteria and eucaryotes (Odermatt et al., 
2018), and a phytoplankton phenology algorithm based on Lake CCI products is still un-
der development. We will make use of these indicators as soon as they become available. 
The Lake CCI cyanobacteria index and phenology products for chl-a and cyanobacteria 
are expected to be completed during the first year of CIBER, while new primary produc-
tivity products are not expected. We consider this missing input as of low relevance, be-
cause biomass products (i.e., chl-a) are to some extent expected to make up for this gap. 
The use of new cyanobacteria and phenology products from Lake CCI, however, is an im-
portant innovation in CIBER, which is of high relevance both for the scientific objectives 
of CIBER and for proving their quality and information content. 

Monitoring lake resilience indicators and detecting regime shifts and anomalies in 
lake ecosystem is an important component of understanding how climate change impacts 
fish biodiversity. They are in focus of the ESA RESETlakes project (PI: Eawag), which runs 
in parallel to CIBER. We thus expect relevant knowledge transfer across the two projects, 
in particular methods that indicate lake regime shifts and anomalies from Lake CCI prod-
ucts, and we.  expect that they will be of high importance to the CIBER project, while lake 
resilience indicators are less likely to become available for the project, apart from the case 
where a regime shift indicates. failing resilience.  

We do not plan to incorporate food web models into our analysis; thus, we will not use 
EO-derived PP indicators in food web models. 

Assessing impacts of remotely sensed variables on other (higher trophic level) biodiver-
sity variables is the main objective of CIBER. We can explicitly assess the impacts of phy-
toplankton phenology with the new CCI phenology products, which makes this 
knowledge gap highly relevant. Impacts of net primary productivity (NPP) can only be 
investigated based on phytoplankton biomass (chl-a) as a surrogate, which makes NPP as 
an explicit variable less relevant. Using our link to the RESETlakes project, we hope to be 
able to incorporate downstream products on trends and anomalies in chl-a phenology 
in our analyses of fish biodiversity, which gives it a potentially high relevance for CIBER. 
Decadal trends of the earlier emergence of seasonal blooms can be extracted directly from 
the phenology products, anomalies are deviations from these trends that can be associ-
ated to causes such as, e.g., preceding winters with anomalous mixing behaviour or lake 
ice cover. 
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3.1.3 Interlinkages between ecosystem structure and functioning 

CIBER does not focus on invasive species specifically, and the expected taxonomic resolu-
tion of the habitat templates is at the genus or family level. However, the resilience of 
habitat templates of co-occurring fish taxa (e.g. one native and one invasive) under cli-
mate scenarios may inform the relative spread of invasive species. However, this would 
only provide a modelled estimate, not monitoring data. We hence don’t consider this 
knowledge gap relevant for the satellite data analyses in CIBER. 

3.1.4 Environmental variables 

While the CIBER project will consider the turbidity and connectivity of lake ecosystems, 
we do not expect to directly address the impacts of hydraulic engineering on sedimen-
tation processes. 

We anticipate that we will use EO-derived land cover and watershed meteorologic condi-
tions as inputs into the fish habitat template models. We include these as inputs because 
of the expected impacts of land use/land cover, watershed precipitation on nutrient 
inflows. However, we will not directly connect these basin characteristics with nutrient 
inflows, so this knowledge gap is of low importance. 

Thermal stratification and lake mixing are important indicators of fish habitat suitability, 
which is why 1D lake model simulations will be performed alongside the use of new lake 
stratification information compiled from Lake CCI LSWT products (Calamita et al., sub-
mitted). Therefore, we have ideal prerequisites to incorporate changes in thermal strat-
ification and lake mixing regimes in our analyses, and we consider this a highly relevant 
knowledge gap for CIBER.  

3.1.5 Interlinkages between ecosystem and environmental variables 

Thermal stratification is an important environmental variable in fish habitat suitability 
for several reasons. One reason is the impacts of thermal stratification and lake mix-
ing on phytoplankton growth, a key part of the lake food web. We expect better under-
standing of the connection between phytoplankton growth and thermal stratification to 
be highly relevant to the CIBER project. 

We anticipate that assessment of the impacts of extreme weather and climate events 
on biodiversity variables will be of low importance to the CIBER project. While these 
events can produce anomalies in lake ecosystems, we do not focus on the connection be-
tween lake ecosystem variables and meteorological events. 

CIBER focuses on the relationship between remotely sensed habitat properties and fish 
taxa distribution, without investigating why habitat properties may change. The attribu-
tion of reasons for changing wetland and river delta formation, changes in phyto-
plankton phenology or lake tropic state are thus out of the scope of CIBER.  

3.2 Other knowledge gaps 
To our understanding, the BIOMONDO Science Roadmap presents a comprehensive as-
sessment of knowledge gaps in remote sensing of freshwater biodiversity. As the project 
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develops, we will complement this assessment with knowledge gaps in remote sensing 
for freshwater fish for the release of version 2 of this document. 

3.3 Contributions by CIBER and expected challenges  

3.3.1 Knowledge gaps to be addressed 

Building on the knowledge gaps described in BIOMONDO, we have identified the 
knowledge gaps that we expect to address in the CIBER project (“high relevance” in Table 
2). Distilled into three overarching categories, the knowledge gaps we plan to address re-
late to: 

- thermal stratification, 
- NPP/phytoplankton impacts on other biodiversity variables, and  
- resilience, regime shift, and anomaly detection. 

Advancements in monitoring of changes in thermal stratification and lake mixing regimes 
were achieved by Calamita et al. (submitted), who evaluated the stratification stability  
using CCI Lakes data and the thermal bar method (Fichot et al., 2019) and identified 
anomalies in the mixing behaviour of more than 600 dimictic lakes. Furthermore, we will 
compile our own 1D lake model simulations in CIBER, which provide even more detail on 
vertical temperature gradients, and the capacity to simulate these gradients for different 
climate change scenarios (see section 2.5). These new data sources contribute to the de-
tection of regime shifts and anomalies in lakes, and they allow the assessment of impacts 
of thermal stratification on lake mixing and primary production. Thus, there has been sig-
nificant progress in addressing these knowledge gaps, which CIBER can build on and con-
firm the benefits of. 

Assessing the impacts of remotely sensed variables on biodiversity variables is the main 
objective of CIBER, using fish counts and diversity as the key impact variable. With most 
remotely sensed variables (phytoplankton and cyanobacteria biomass, phenology, lake 
stratification) being available, our research will largely focus on how they can be statisti-
cally related to GBIF data, and in this way improve our understanding of how basic phys-
ical and food web variables relate to higher trophic levels. With a comprehensive analysis 
of the biotic and abiotic variables impacting fish biodiversity, we expect to improve our 
understanding of resilience indicators in lake ecosystems. Connected to assessing resili-
ence, we expect to apply regime shift and anomaly detection algorithms to phytoplankton 
time series and other variables that influence fish habitability. In this category of 
knowledge gaps, CIBER relies largely on the collaboration with the parallel ESA project 
RESETlakes. 

3.3.2 Challenges 

Our review of BIOMONDO knowledge gaps also revealed some gaps that we may not be 
able to account for in the CIBER project. It is uncertain if we can account for the impacts 
of river connectivity and invasive species on the lakes’ fish communities with our habitat 
models. We are currently not aware of suitable global data sources, but might find case 
studies, e.g., on lakes that have a lot of revitalised rivers in their catchment, or lakes that 
are affected by a recent colonisation by benthic mussels. However, it currently seems that 
a systematic assessment of these impact variables is currently not feasible. 
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4 Data, models and methods for CIBER 
To address the knowledge gaps and scientific requirements of the CIBER project, we will 
develop freshwater fish habitat templates using environmental variables from available 
data sources. In our context, the term "habitat template" refers to a quantitative descrip-
tion of the physical and chemical environment and additional lake variables (e.g. depth) 
that define the habitable environmental space of a given species or a species group (South-
wood, 1977; Suren and Ormerod, 1998). For definition of freshwater fish habitat tem-
plates, existing literature and extractions from data repositories and scientific data bases 
will be used to access information on species’ habitat requirements and geographical oc-
currences of fish species at the global scale. These data sources and further literature ex-
tractions identified provide the data basis for the identification of habitat requirements at 
high taxonomic resolution. These can be used as a basis for fish habitat template charac-
terisations and corresponding species occurrence models.  

Three data sources will generate the required information for specification of the habitat 
templates and habitat requirements: 

A. Species Occurrence: Data on fish species in individual lakes as recorded in biodi-
versity data bases.  

B. Lake habitat descriptors: Characterisation of the physical, chemical, biological, (hy-
drological,) and morphological properties of lakes in the target region derived 
from satellite-based EO, large scale data bases, and mechanistic models. 

C. Trait-based species characterisation: Characterisation of the physiologically de-
rived environmental preferences as provided by trait-oriented data bases. 

The data sources for these three approaches, which will be explored simultaneously and 
in parallel, are provided in Table 3. The table is not exhaustive, and additional sources 
might be added.  

When evaluating the overall data availability two workflow paths can be employed. First, 
by combining A and B based on individual lakes that appear in both collections, species-
specific, i.e. typical, habitat descriptors can be identified for a given species. As soon as 
this link between species occurrence and lake descriptors is established, the identified 
transfer function is applicable to any other lake whenever the set of lake habitat de-
scriptors is available. This follows the logic: “tell me the properties of the lake ecosystem 
and I tell you the species that likely appear”.  The more generic the identification of lake 
habitat descriptors is (e.g. by global-scale covering data bases, EO-based data, transfera-
ble models), the more applicable the emerging workflow will be. 

Second, an alternative approach is to combine B and C in such a sense that the lake habitat 
descriptors identify a set of species whose physiological preferences fit into the range of 
lake habitat descriptors. This approach is less reliable simply because not all species 
whose physiological preferences are fitting necessarily occur in reality. On the other hand, 
this approach is very powerful to analyse the effects of a changing environment, e.g. by 
global warming or anthropogenic pollution by nutrients, as biodiversity loss can be pre-
dicted based on surpassing physiological thresholds of given species. 
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Table 3 Data sources supporting generation of habitat templates and habitat requirements. 

Approach Data sources 

A • Global Biodiversity Information Facility (GBIF Database): 
https://www.gbif.org/ 

• Freshwater biodiversity data portal, Biofresh-Project, 
https://data.freshwaterbiodiversity.eu/metadb/ 

• Worldbank Global Biodiversity Data, 
https://data360.worldbank.org/en/dataset/WB_GBIOD  

B • LakesCCI-Dataset for lake habitat descriptors like chlorophyll a, tur-
bidity, secchi depth 

• Hydrolakes database (lake morphometry) 
• Water temperature dynamics along the vertical axis derived from ap-

plying a 1D hydrophysical model (e.g. Simstrat or GLM). Model simu-
lations are either done in CIBER or taken from the ISIMIP lake sector 

• Oxygen conditions in the deep waters based on the model of Nkwale 
et al. (2023) using information on trophic state, stratification dura-
tion and deep water temperature (derived from the sources above) 

• Basic meteorological and climatological data (ERA5) 

C • Fwtraits, R-package described in Basooma et al. (2025). 
FishBase: https://www.fishbase.org   

In addition, an extrapolation into future climatic conditions requires the inclusion of cli-
mate projections. Foreseen sources for biodiversity data, remote sensing based products 
and climate datasets are described and discussed in sections 4.1.1-4.1.3. 

Appendix A.1 contains a draft work logic diagram in to visualize the connections between 
the datasets, models, and methods in CIBER. 

4.1 Data sources 
The definition of data needs and sources will be continuously assessed as the project de-
velopments progress. New sources will be added as needed.  

4.1.1 Biodiversity data 

The Global Biodiversity Information Facility (GBIF) is an online database of species occur-
rence records. GBIF provides a single portal to download data from a wide variety of re-
gions and study types. 

GBIF is the most comprehensive global database of occurrence records, but it is an imper-
fect data source. The data only assess the presence of a species, not the absence of a species 
in a water body. Absence data would allow a more complete picture for statistical analysis 
of habitat suitability, but absence requires much more exhaustive field methodology than 
presence. Also, as GBIF is a voluntary collection of studies, it has a nonuniform data 

https://www.gbif.org/
https://data.freshwaterbiodiversity.eu/metadb/
https://data360.worldbank.org/en/dataset/WB_GBIOD
https://www.fishbase.org/
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distribution across countries and lakes. For example, Metropolitan France alone has more 
than 100x the data as the IPBES region of Central Asia despite being 0.15x the land area.  

We will use the GBIF data in two steps. First, we will create rarefaction curves based on 

GBIF data to determine the resolution we will work at (taxonomic, spatial). Second, we 

will use GBIF to determine fish habitat preferences.  

In addition to presence data, we will use existing trait data on fish to determine reasonable 
bounds on data-driven habit templates. We will use trait data and expert opinion to assess, 
for example, if the suitable water temperature range developed from the species distribu-
tion models (see Section 4.3) align with known temperature preferences of a given fish 
genus. 

The FishBase and Freshwater Information Platform (FIP) are well-established, accessible 
repositories of fish trait data. As these databases are collections of data from many 
sources, the data are not uniformly distributed across lakes in the study area. We will need 
to rely on range maps and expert opinion should these databases have insufficient data 
density. 

To assess river connectivity, we will also investigate using existing dam datasets, starting 
with Global Dam Watch (GDW, GlobalDamWatch.org). This dataset is coordinated with 
HydroLAKES and has georeferenced metadata on dam construction and intended use.  

4.1.2 EO data products 

The project will build on a range of operational EO data products and services. The Euro-
pean Space Agency’s Climate Change Initiative (ESA CCI) provides a comprehensive suite 
of Essential Climate Variable (ECV) datasets designed to support climate research and ap-
plications (https://climate.esa.int). For this study, the focus is on ECVs that are directly 
relevant to freshwater ecosystems and fish biodiversity assessments. The Lakes CCI da-
taset serves as the primary remote sensing data source, offering long-term, globally con-
sistent records of Lake Surface Water Temperature (LSWT), Lake Ice Cover (LIC), and 
Lake Water Leaving Reflectance (LWLR). These parameters are inputs for monitoring the 
thermal regime, ice phenology, and optical water quality characteristics of lakes. Derived 
products such as chlorophyll-a concentrations, turbidity, and harmful algal bloom (HAB) 
indicators from LWLR further enhance the ecological relevance of these datasets. The ECV 
products in the ESA CCI suites that we anticipate using and their connection to the science 
requirements, are identified in Table 4 

The ESA CCI ECVs are the scientific foundation but will be complemented with data from 
Copernicus operational services, such as the Copernicus Land Monitoring Service (CLMS), 
which offers high-resolution and thematic products on land cover, land use, and specific 
ecosystems. In particular, the CLMS Riparian Zones product provides valuable spatial in-
formation on vegetation structure and dynamics along water bodies in Europe 
(https://land.copernicus.eu). 

Beyond pre-processed ECV and CLMS products, satellite raw data sources, including Sen-
tinel-1 (SAR), Sentinel-2 (optical), Sentinel-3 (ocean and land monitoring), and Landsat-8 
will be evaluated for their potential to derive additional variables where required. For 
these cases, existing algorithms and processing frameworks will be applied to generate 
additional parameters. 

https://www.globaldamwatch.org/
https://climate.esa.int/en/#/
https://land.copernicus.eu/
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The selection of datasets and data sources will remain adaptive throughout the project. If 
specific datasets prove to be redundant or unsuitable for the analyses, they will be re-
placed or neglected. New or emerging EO products may be integrated if they enhance the 
scientific objectives. This flexible and iterative approach ensures that the data foundation 
remains current, comprehensive, and fit for purpose.  

Table 4: Preliminary list of relevant parameters and identified data sources 

Parameter Data Source 

(Sec.4) 

Processing Key Metrics Science 

Req. (Sec.2) 

Knowledge 

gap (Sec. 3) 

Surface water tempera-

ture 

ESA Lakes 

CCI (LSWT) 

Data ac-

cess 

Range, extreme 

events 

2.1-2.5 3.1.4-5 

Deep water temperature 1D lake hydro-

physical mod-

els simulations 

Own pro-

cessing 

Seasonal stratifi-

cation, thermo-

cline depth, hy-

polimnion tem-

peratures 

2.3   3.1.4 

Oxygen 1D lake hydro-

physical mod-

els simulations 

and empirical 

oxygen model 

Own pro-

cessing 

End-of-stratifica-

tion dissolved 

oxygen concen-

tration, deep wa-

ter anoxia/hy-

poxia 

2.1, 2.4 3.1.4-5 

Turbidity/Transparency ESA Lakes 

CCI (Turbid-

ity) 

Data ac-

cess 

Mean, range, 

trends, shifts 
2.3 3.1.4-5 

Phytoplankton abun-

dance 

ESA Lakes 

CCI v2.1/2.2 

(Chlorophyll) 

Data ac-

cess 

Mean, range, 

trends, shifts 

2.2 3.1.2 

Cyanobacteria abun-

dance 

ESA Lakes 

CCI v2.2 (cya-

nobacteria in-

dex), Cy-

anoAlert (own 

processing) 

Data ac-

cess, own 

processing 

Mean, range, 

trends, shifts 

2.2 3.1.2 

Phenology BGB phenol-

ogy algorithm 

Own pro-

cessing 

Number, sea-

sonal patterns 

and spatial extent 

of blooms 

2.2 3.1.2 

Bathymetry Modelling, 

HydroLAKES 

Data ac-

cess, own 

processing 

Hypsographic 

curves, structural 

complexity 

2.3 3.1.4 

Morphology  CLMS Ripar-

ian Zones 

Data ac-

cess 

Shoreline com-

plexity 
2.3 3.1.1 

Zonation/Basins ESA CCI Land 

Cover, Hy-

droLAKES, 

ISIMIP 

Data ac-

cess 

Basin land cover 

types, Lake prop-

erties 

2.4 3.1.1 

Lake ice cover ESA Lakes 

CCI (LIC) 

Data ac-

cess 

Ice cover dura-

tion, seasonal 

trends 

2.1, 2.4 3.1.4 

Table 4 contains two different types of input sources. The first type corresponds to oper-
ational services. These need to be accessed via their individual interface, and individual 
preprocessing (subsetting, selection of desired variable, QC, spatial interpolation and re-
mapping) needs to be applied. For cases where there are no operational services available, 
we can access the satellite data and process the required parameters in the team. It should 
be noted that it includes easy cases, like water quality parameters from Copernicus satel-
lites. The second type are modelled parameters where interfaces will be implemented to 
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a potential model, or the model output data will be cubed to the properties of the EO data 
cubes. The modelled data is further discussed in section 4.2. 

The project’s focus on creating data cubes of various datasets is in alignment with ESA’s 
Earth Observation Science Strategy (European Space Agency, 2024). Those data cubes are 
essential for developing web tools to allow the public and other researchers to access and 
query the data compiled for this project. 

To complement the lake-specific parameters, several additional CCI ECV datasets can be 
integrated for cross-variable analysis. Soil Moisture CCI data contributes to understanding 
wetland and catchment hydrology. River Discharge CCI supports the assessment of hydro-
logical connectivity, freshwater inflows, and the influence of precipitation variability on 
habitat conditions. High- and medium-resolution Land Cover CCI products will be used to 
identify land-use changes such as deforestation, urban expansion, and agricultural inten-
sification. Other potential relevant ECVs under consideration include Snow Cover CCI, 
which informs on seasonal runoff and thermal regimes; Fire CCI, offering information on 
disturbance events that affect erosion and nutrient cycling; and Vegetation CCI, which pro-
vides indicators of riparian and aquatic vegetation. 

4.1.3 Climate ensemble projections 

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b) is an established 
framework and international coordinator for climate modelling reanalysis and projec-
tions (see https://www.isimip.org/protocol/3/ and Frieler et al. (2024)). ISIMIP3b main-
tains a data repository and standardized protocol for global bias corrected climate pro-
jections using a multi-model ensemble of different GCMs. For ISIMIP3b, these bias-cor-
rected CMIP6 climate forcing data are provided for the following scenarios: pre-industrial, 
historical, SSP1-RCP2.6, SSP3-RCP7.0 and SSP5-RCP8.5 conditions. Data are available at a 
0.5°x0.5°C global grid and at daily time step. The new bias-adjustment has been developed 
by Stefan Lange and corrects the simulated data towards corrected ERA5 observational 
data (W5E5). Climate-input data for the climate ensemble projections in CIBER uses these 
climate forcings, interpolated to the specific location of the lake, as meteorological input 
for the lake model. Generally, for ISIMIP3b simulations, the lake model outputs produce 
daily and monthly projections from 2015 through 2100.  

For some lakes, the ISIMIP lake sector provides already finished lake model outputs and 
CIBER has access to lake model projections from multiple models under various climate 
change scenarios. The overlap between the ISIMIP3-lake sector lakes and the CCI lakes 
will be a good starting point for the foreseen habitat templates analysis as no additional 
data processing is required. The model projection variables from these lake sector simu-
lations are thermal stratification status, depth of the thermocline, temperature depth pro-
files, surface and bottom water temperature, lake ice cover, lake ice thickness, sensible 
and latent heat fluxes, and light extinction coefficient.  

4.2 Lake models 
We will complement the extensive number of datasets in the project with data from hy-
drodynamic 1D lake models. The 1D lake models will be used to generate more data on 
environmental conditions within lakes in the study region. We then use the EO products, 

https://www.isimip.org/protocol/3/
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model outputs, and fish presence data as the inputs into habitat suitability models (Figure 
5 and Appendix A.1). With the habitat templates generated, we then assess changes in 
habitat suitability under climate projection inputs. 

 
Figure 5: Overview of the models and datasets used for the project.  

To augment the EO data products, we will use a 1-dimensional (1-D) hydrodynamic lake 

model. The project team has extensive experience with two existing models: Simstrat (at 

Eawag) and GLM (at UFZ). These 1-D models estimate the thermal structure of lakes at 

high temporal resolution. By capturing the vertical profiles of lakes, we can model diffi-
cult-to-observe variables relevant to fish habitat suitability, including dissolved oxygen 

and deep-water temperature (Table 4). The lake models not only extend current infor-
mation on biodiversity indices but also provide projections of future climate impacts 

based on climate projections from the IPCC.   

We use 1-D models for this project, as they provide an important balance between acces-

sibility and accuracy (Gaudard et al., 2019). Using bathymetry data from HydroLAKES, we 
can capture structural complexity of lakes, without the computational intensity of a full 3-

D simulation. This computational efficiency makes 1-D models well-suited for long-term 

analysis and for coupling with biological and water quality simulations (Gaudard et al., 
2019). In this context, however, 1D physical models are highly appropriate because (1) 

the required input data can be provided from data bases and remote sensing, (2) they are 
fast and easy to apply, (3) they provide data that are relevant to fish but cannot be meas-

ured by satellites (temperature gradients, mixing regime, hypolimnion temperature), (4) 
they were proven to be transferable among different lakes (Bruce et al., 2018), and (5) 

their output can be used as proxy for further decisive lake characteristics (e.g. oxygen sta-
tus). Using bathymetry data from HydroLAKES, we can capture structural complexity of 

lakes, without the computational intensity of a full 3-D simulation. 

The Simstrat physical model has four classes of inputs (similar to GLM):  

(1) Morphology – the area-elevation (hypsographic) curve derived from Hy-
droLAKES 
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(2) Meteorological forcings – atmospheric conditions at the lake surface (wind 
speed, air temp, vapor pressure, cloud cover). Multiple forcing input combina-

tions available. These inputs can be ERA5 reanalysis or climate projections. 
(3) Hydrologic flows – inflow and outflow quantities, inflow temperature and salin-

ity. Data source not yet determined. Global, dynamic discharge estimates are 

provided by ISIMIP2-data but for most lakes a simplified assumption is suffi-
cient (e.g. assuming average, constant inflows/outflows or even assuming no 

inflow/outflow). 
(4) Light attenuation – implemented as a function of time and depth. This variable 

couples with the biogeochemical module of the model or can be approximated 
by transparency, which is retrieved by satellites.  

Simstrat has parameters such as ‘UserDefinedWaterAlbedo’ where EO data products can 
improve model accuracy. 

In addition to the physical model, Simstrat and GLM can be coupled to the AED2 biogeo-
chemical model which models dissolved oxygen, phytoplankton populations, and organic 

matter. These model outputs provide a useful validation (phytoplankton and CDOM) and 

extension (DO) of EO data products, but its application goes beyond the scope of this pro-
ject and cannot be run for all CCI lakes. For oxygen, however, simplified empirical models 

can be linked to the 1D model outputs, e.g. the approach from Nkwalale et al. (2023). 

4.3 Methods  
Before development of habitat suitability models, we will first use rarefaction curves to 
assess the biodiversity data availability in the different lakes within the study area.  Rare-
faction curves indicate how well the samples taken represent the underlying diversity of 
an ecosystem (Hsieh et al., 2016). For example, Figure 6 shows the rarefaction curve for 
Bodensee in Bavaria, Germany. The in-situ samples in this lake have likely captured ap-
proximately 82% of the fish species present. 
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Figure 6: Rarefaction curve of GBIF fish occurrences for Bodensee, Germany. 

An important preanalytical step for the evaluation of species occurrence data from data 
bases is the balance between taxonomic resolution and the sampling effort by rarefaction 
analysis. This is required because the observation of species depends on the sampling ef-
forts. Since the entries in the databases are heterogeneous with respect to the underlying 
sampling intensity, a balancing by rarefaction is required. With these rarefaction curves, 
we will determine the taxonomic resolution for our analyses and rank lakes by sampling 
saturation. 

To assess fish habitat suitability, we will use the MaxEnt algorithm to create species dis-
tribution models (SDMs) (Merow et al., 2013). These are also called environmental niche 
models and model habitat range at any taxonomic level, not just at the species level. 

Many algorithms exist to calculate SDMs based on data-driven statistical or machine 
learning approaches. We will use the MaxEnt algorithm, which is based on machine, is 
established and accurate. Importantly, MaxEnt takes presence-only data as an input, the 
type of data available on GBIF. MaxEnt also takes gridded environmental variables as in-
puts, which is well-suited to the EO and model data products. 

An initial data analysis may be complemented by standard multivariate statistics like clus-
ter analysis, factor analysis or CCA. 
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Figure 7. A conceptual plot for identifying the fundamental/theoretical ecological niche of given species based on the 
available data. 

5 Conclusions  
The conclusions from the review analysis, including main findings and the intended con-
tribution by CIBER related to the identified knowledge gaps and scientific challenges, are 
summarized below. 

Biodiversity and climate change are deeply intertwined.  Climate change impacts fresh-
water ecosystems by altering thermal niches, community structures, and species presence 
and distributions. At the same time, the current biodiversity status of a given ecosystem 
is influencing its sensitivity to climatic changes. Direct global monitoring of freshwater 
biodiversity is challenging due to the complexity of ecosystems and the need for proxies 
to assess environmental conditions and biodiversity trends.  

Key knowledge gaps include understanding the impacts of thermal stratification, net pri-
mary productivity (NPP), and phytoplankton phenology on fish biodiversity.  There is also 
a need for improved methods to detect regime shifts, anomalies, and resilience indicators 
in freshwater ecosystems.  Distilled into three overarching categories, the knowledge gaps 
we plan to address relate to: 

• thermal stratification, 

• NPP and phytoplankton impacts on other biodiversity variables, and  

• resilience, regime shift, and anomaly detection. 

EO techniques, and particularly satellite remote sensing, are critical for monitoring fresh-
water ecosystems.  They provide scalable, consistent, and repeatable data on environmen-
tal variables such as lake surface water temperature, chlorophyll-a concentrations, 
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turbidity, and phenology. The requirements analysis identified the need for scalable, 
transparent, and flexible data and models to support monitoring freshwater biodiversity. 
It also highlighted the importance of integrating EO-derived parameters with biodiversity 
models to address knowledge gaps and support decision-making.  

In CIBER we will therefore utilize a combination of EO data products, 1D lake models (Sim-
strat and GLM), data from biodiversity databases (e.g., GBIF, FishBase) and fish habitat 
modelling (MaxEnt) to develop species distribution models and freshwater fish habitat 
templates to assess climate-driven changes in habitat suitability. We strive to identify suit-
able workflows to adopt this integrative approach.  For that, we analyse to what extent 
the existing CCI datasets and products can be used together with the identified models 
and available in situ fish biodiversity data, for the IPBES region Europe and central Asia, 
to improve understanding of climate-biodiversity interactions. If not suitable or sufficient, 
we will investigate how the results can be leveraged with additional own processing of EO 
data, e.g. for lakes that CCI-ECVs do not cover or where improved spatial resolution or 
other temporal aggregation is needed. Adaption of models to the additional EO data prod-
ucts and their impact on resulting habitat templates will also be necessary. 

In addition, recent advances related to improved monitoring of thermal stratification and 
mixing regimes in lakes, in combination with our 1D lake model simulations that provide 
detailed vertical temperature profiles and allow scenario-based simulations under cli-
mate change, will enhance the detection of regime shifts and anomalies. This will establish 
new workflows that combine modelling and EO and will support an assessment of how 
thermal stratification affects lake mixing and primary production and demonstrate sub-
stantial progress in addressing existing knowledge gaps. 

Finally, the outcome of the developments and analysis of results should help to determine 
whether results for additional lakes can be achieved, including variations in regional spa-
tial and seasonal to interannual temporal scales. It should also contribute to understand-
ing remaining parameter needs and what additional environmental predictors are lacking 
and suggestions for how these needs can be addressed and by what means. Finally, it will 
also characterise the opportunities and limits of an EO centered approach towards biodi-
versity in ecosystems. 
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A.1 Data and methods overview 

 

Figure 8 Very draft overview of project workflow with data, models, inputs and outputs. 


