

Using Machine Learning to Evaluate and Understand our Capability to Model Tropical Wetland Methane Emissions

Rob Parker¹, Cristina Ruiz Villena¹, Khunsa Fatima¹, Chandana Pantula¹, Paul Palmer², Nicola Gedney³

1. National Centre for Earth Observation, University of Leicester, Leicester, UK. 2. National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK. 3. UK Met Office Hadley Centre, Exeter, UK.

Motivation Wetlands

- **Wetlands** the largest natural source of methane are complex ecosystems, challenging to model and measure.
- There are large uncertainties associated to wetland methane emissions, particularly in tropical Africa.
- These uncertainties reduce our ability to model wetland methane, with many models disagreeing.
- Wetland extent is complex and highly variable.

planet

Key 1) How are tropical wetland methane emissions responding to climate change? 2) How will they continue to do so under **future climate scenarios**? Questions

Methodology

Acknowledgements: This work is funded by the European Space Agency (ESA) under the Climate Change Initiative (CCI) CMUG programme, UKRI Future Leaders Fellowship (Grant: MR/X033139/1), and the Natural Environment Research Council (Grant: NE/X019071/1, "UK EO Climate Information Service").

