Using Machine-Learning to Evaluate and Understand our Capability to Model **Tropical Wetland Methane Emissions**

Dr Robert Parker

University of Leicester

National Centre for

Earth Observation

Co-authors: Cristina Ruiz Villena, Nic Gedney, Paul Palmer, Khunsa Fatima, Pantula Chandana

Natural Environment Research Counci

Project Details/Updates

Work initially funded via CMUG has now grown into a wider research project:

- "The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change"
- Funded as part of my 4-year UKRI Future Leaders Fellowship ٠

As part of CMUG project:

- Focused on Africa ٠
- We're developing an emulator for JULES wetland methane ٠
- Will use it's explainability to show which factors matter in the model ٠
- Will drive the emulator with CCI EO data to generate wetland fluxes ٠
- Compare those to a CH₄ inversions performed on GOSAT/TROPOMI ESA-CCI data ٠

As part of FLF:

- Focused on whole Tropics •
- We'll extend emulator to other models from Global Carbon Project
- Develop EO ML-based wetland extent datasets ٠
- Combine hydrological models with our land surface models to better represent wetland dynamics ٠
- Improve methane wetland emissions in UK Earth System Model for climate predictions (including ESMValTool recipes for evaluation)
- Develop "climate services" around this capability, providing decision support to stakeholders

Dr Rob Parker – University of Leicester – rjp23@le.ac.uk

Complex

Unexplained Increases

Alarming and Urgent

Tropical Wetlands?

Missing Knowledge

The Problems

The First Problem. Significant differences between the methane from models **The Second Problem.** Models fail at correctly simulating the size and location of wetlands

Parker et al., Biogeosciences, 2022

The key research questions that I will address:

How are tropical wetland methane emissions responding to climate change?
How will they continue to do so under future climate scenarios?

Dr Rob Parker – University of Leicester – rjp23@le.ac.uk

Models disagree

"Models demonstrate extensive disagreement in their simulations of wetland areal extent and CH_4 emissions, in both space and time" – Melton et al., 2013

Intercomparisons are challenging

National Centre for

Earth Observation

Space

Leicester

Natural Environment Research Council

Wetland extent = huge uncertainty

"Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets." – Melton 2013

Partnering with Planet

- New ML-based wetland extent dataset
- Improve estimates of wetland extent

Sudd Wetlands in South Sudan

Parker et al., Rem. Sensing of Env., 2018 Parker et al., Biogeosciences, 2020 Parker et al., Biogeosciences, 2022

Space Park Leicester

Questions: Slido.com #colocation24

Natural Environment Research Council

Vision

We will develop a **new world-class capability in Environmental Digital Twins**, enabling cutting-edge science and truly impacting on climate policy decision-making.

Wetland Extent

Space

Leicester

Wetland Methane

0.6

0.8

1.0 1e-11

- Ensemble of simulations
- Currently 6 members but work ongoing
 - Different forcing meteorology
- Different temperature dependencies
 - Different soil types

We train a **machinelearning** decision-tree model (*emulator*) using JULES data to reproduce wetland extent and methane emissions.

Advantages

- ✓ We can run many simulations very fast
- ✓ No need for expert knowledge
- ✓ No need for expensive supercomputers
- ✓ We can derive useful metrics for users
- ✓ They can be deployed on web platforms
- They can integrate many types of data
- Explainable AI.

Model-data fusion

We will drive the emulator with input based on ESA-CCI data to produce new wetland CH_4 emissions, consistent with observed LST and soil moisture.

temperature cci soil moisture cci

land surface

ML-based Architecture for Segmentation and Classification

VS

EO-based Extent

Next Steps

- Continue with additional JULES simulations to extend ensemble
- Discuss with CCI teams (LST, soil moisture) on most appropriate datasets to use to drive emulator
- Develop wetland extent datasets and make use of CCI land cover

National Centre for Earth Observation VS

- Continue to develop emulator
 - Fairly slow process as lots of potential combinations of input features
- Evaluate against GHG-CCI CH₄ data
 - Perform regional flux inversions

EO-based Extent

Wetland Extent

Methane (CH₄)

 ${\bullet}$

Questions: Slido.com #colocation24

Natural Environment Research Council

Questions: Slido.com #colocation24

For more details, please see poster and talk to Cristina, Khunsa and Chandana ③

