

climate change initiative

→ CLIMATE MODELLING USER GROUP

WP5.1 **Machine learning to advance climate model evaluation and process understanding**

Lisa Bock¹, Axel Lauer¹ and Veronika Eyring^{1,2}

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ²University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany

CCI Colocation & CMUG Integration meetings 2024 16 - 18 October 2024

ESA UNCLASSIFIED - For Official Use

WP5.1.1 **Enhancing observational products for climate model evaluation with machine learning**

Input variable Cloud water path Cloud top phase Effective particle radius Cloud optical thickness Cloud top pressure Effective emissivity Surface temperature

ESACCI-Cloud (complete record)

- ESA Cloud cci L3U-AVHRR-PM v3.0
- Coarse-grained
- Grid box averages of physical variables

Kaps et al., 2023, IEEE Transactions on Geoscience and Remote Sensing

Machine-Learned Cloud Classes From Satellite Data

1. Step:

- pixel-wise classifier based on the Invertible Residual Network framework
- trained on the CUMULO dataset (year 2008) created by Zantedeschi et al. (2019)
- CUMULO contains physical variables obtained from the MODIS Cloud Product MYD06 dataset
- target labels are WMO-like cloud-type labels from CloudSat's 2B-CLDCLASS-LIDAR (CC-L) dataset

2. Step:

- application of a Random Forest (RF), which is used as a regression model to predict the relative frequency of occurrence (RFO) of each of the nine classes
- regression model trained on coarse-grained output from the first stage

Cloud Class Climatology dataset

(CCClim, 1982-2016)

https://doi.org/10.5281/zenodo.8369201

- 8 WMO-like cloud types with a long coverage period (35 years) and high spatial resolution $(1^{\circ} \times 1^{\circ})$ as daily samples
- · consistent seasonal variations, sensible regional distributions and little drift over the complete period
- · all cloud types can be associated with relevant physical quantities

H

Kaps et al., 2024: Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology, Earth Syst. Sci. Data

Climate Modelling User Group CMUG | 16-Oct-2024 | Slide 2

WP5.1.1 **Enhancing observational products for climate model evaluation with machine learning**

CCClim

Kaps et al., 2024: Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology, Earth Syst. Sci. Data

Average geographical distribution of the relative frequencies of occurrence (RFOs)

 \rightarrow Can be used for the evaluation of climate models

Climate Modelling User Group CMUG | 16-Oct-2024 | Slide 3

WP5.1 **Machine learning to advance climate model evaluation and process understanding**

WP5.1.1 **Enhancing observational products for climate model evaluation with machine learning** \rightarrow Developing Mased approach to derive cloud classes from coarse-scale datasets ζ^{\times} ω° Labeled ESA CCI MODIS properties and the cloud dataset Paper published

- \rightarrow Application of NN: timeseries of labelled ESA CCI Cloud data
- \rightarrow Evaluation of climate models

www.hotulity.hotulity.hotulity.in

Causal inference (Runge et al., 2019)

- \rightarrow Investigate the causal connections among the cloud properties and their controlling factors (in ESA CCI data)
- \rightarrow Evaluation of global climate models

Climate Modelling User Group CMUG | 16-Oct-2024 | Slide 4

м

WP5.1.2 **Causal model evaluation for cloud regimes and land**

cover types

Quantifying the causal effect of cloud controlling factors on marine stratocumulus clouds

Region (South East Pacific): 75°- 95°W, 10°- 30°S 5 years daily data (2003 – 2007)

5°× **5**° **spatial resolution:** at this grid scale clouds are in equilibrium with their

large-scale environmental controls (Klein et al., 1995) *Wood, 2012*

15 20 25 30 35 40

Geostationary Operational Environmental Satellites (GOES)

ы

Data

 45

temperture CMUG | 16-Oct-2024 | Slide 5

WP5.1.2 **Causal model evaluation for cloud regimes and land cover types**

Method: Causal inference

PCMCI (*Runge et al., 2019*)

- \rightarrow identifies causal relationships and quantifies their strengths from time series data
- \rightarrow unsupervised machine learning
- \rightarrow approach goes beyond correlation-based measures by systematically excluding common driver effects and indirect links

LPCMCI based on **Fast Causal Inference (FCI)** Algorithm: constraint-based causal discovery with conditional independence tests equal to Peter Clark (PC)-Algorithm but in the presence of unobserved variables (possibility of latent confounders) Gerhardus and Runge, 2020

CausalEffects class: allows to estimate (conditional) causal effects and mediation based on assuming a causal graph.

Runge et al., 2015

м

Climate Modelling User Group CMUG | 16-Oct-2024 | Slide 6

WP5.1.2 **Quantifying the causal effect of cloud controlling factors on marine stratocumulus clouds**

WP5.1 **Machine learning to advance climate model evaluation and process understanding**

WP5.1.1 **Enhancing observational products for climate model evaluation with machine learning** CloudSat label ML VOID LESD **ML** ζ^{\times} ω° Labeled ESA CCI

- \rightarrow Developing M-based approach to derive cloud classes from coarse-scale datasets
- \rightarrow Application of NN: timeseries of labelled ESA CCI Cloud data
- \rightarrow Evaluation of climate models

temperature, Sea surface temperature, Water vapour, Soil moisture

Causal inference (Runge et al., 2019)

- \rightarrow Investigate the causal connections among the cloud properties and their controlling factors (in ESA CCI data)
- \rightarrow Evaluation of global climate models

м

Climate Modelling User Group CMUG | 16-Oct-2024 | Slide 8