

ESA Climate Change Initiative – Fire_cci

D3.2 System Verification Report (SVR)

Project Name ECV Fire Disturbance: Fire_cci Phase 2

Contract Nº 4000115006/15/I-NB

Issue Date 11/01/2019

Version 2.4

Author Thomas Storm

Document Ref. Fire_cci_D3.2_SVR_v2.4

Document type Public

To be cited as: T. Storm, M.L. Pettinari, G. Otón, J. Lizundia-Loiola (2019) ESA CCI ECV
Fire Disturbance: D3.2. Software Verification Report, version 2.4. Available from:

http://www.esa-fire-cci.org/documents

http://www.esa-fire-cci.org/

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 2

Project Partners

Prime Contractor/

Scientific Lead & Project

Management

UAH – University of Alcala (Spain)

Earth Observation Team

UAH – University of Alcala (Spain)

EHU – University of the Basque Country (Spain)

UL – University of Leicester (United Kingdom)

UCL – University College London (United Kingdom)

ISA – School of Agriculture, University of Lisbon (Portugal)

System Engineering BC – Brockmann Consult (Germany)

Climate Research Group

MPIC – Max Planck Institute for Chemistry (Germany)

IRD - Research Institute for Development (France)

LSCE - Climate and Environmental Sciences Laboratory (France)

VUA - Stichting VU-VUmc (Netherlands)

Distribution

Affiliation Name Address Copies

ESA Stephen Plummer (ESA) stephen.plummer@esa.int electronic copy

Project

Team

Emilio Chuvieco, (UAH)

M. Lucrecia Pettinari (UAH)

Joshua Lizundia (UAH)

Aitor Bastarrika (EHU)

Ekhi Roteta (EHU)

Kevin Tansey (UL)

Marc Padilla Parellada (UL)

James Wheeler (UL)

Philip Lewis (UCL)

José Gómez Dans (UCL)

James Brennan (UCL)

Jose Miguel Pereira (ISA)

Duarte Oom (ISA)

Manuel Campagnolo (ISA)

Thomas Storm (BC)

Martin Böttcher (BC)

Johannes Kaiser (MPIC)

Angelika Heil (MPIC)

Florent Mouillot (IRD)

Philippe Ciais (LSCE)

Patricia Cadule (LSCE)

Chao Yue (LSCE)

Pierre Laurent (LSCE)

Guido van der Werf (VUA)

Ioannis Bistinas (VUA)

emilio.chuvieco@uah.es

mlucrecia.pettinari@uah.es

joshua.lizundia@uah.es

aitor.bastarrika@ehu.es

ekhi.roteta@gmail.com

kjt7@leicester.ac.uk

mp489@leicester.ac.uk

jemw3@leicester.ac.uk

ucfalew@ucl.ac.uk

j.gomez-dans@ucl.ac.uk

james.brennan11@ucl.ac.uk

jmocpereira@gmail.com

duarte.oom@gmail.com

mlc@isa.ulisboa.pt

thomas.storm@brockmann-consult.de

martin.boettcher@brockmann-consult.de

j.kaiser@mpic.de

a.heil@mpic.de

florent.mouillot@cefe.cnrs.fr

philippe.ciais@lsce.ipsl.fr

patricia.cadule@lsce.ipsl.fr

chaoyuejoy@gmail.com

pierre.laurent@lsce.ipsl.fr

guido.vander.werf@vu.nl

i.bistinas@vu.nl

electronic copy

mailto:mp489@leicester.ac.uk
mailto:duarte.oom@gmail.com
mailto:mlc@isa.ulisboa.pt
mailto:a.heil@mpic.de
mailto:philippe.ciais@lsce.ipsl.fr
mailto:chaoyuejoy@gmail.com

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 3

Summary

This document is the version 2.4 of the System Verification Report for the Phase 2 of

the Fire_cci project. It documents the system verification activities of the ESA Climate

Change Initiative (CCI) Fire project for its elements used in Phase 2.

The document defines the different verification approaches considered, and describes

the approaches instrumented in every step of the BA product generation.

 Affiliation/Function Name Date

Prepared

System Engineer, BC

Project Manager, UAH

Researcher, UAH

Researcher, UAH

Thomas Storm

M. Lucrecia Pettinari

Gonzalo Otón

Joshua Lizundia-Loiola

10/01/2019

Reviewed
Scientific Leader, UAH

Project Manager, UAH

Emilio Chuvieco

M. Lucrecia Pettinari
11/01/2019

Authorized Scientific Leader, UAH Emilio Chuvieco 11/01/2019

Accepted Technical Officer, ESA Stephen Plummer

This document is not signed. It is provided as an electronic copy.

Document Status Sheet

Issue Date Details

1.0 06/09/2016 First issue of the document

1.1 06/10/2016
Addressing ESA comments according to

CCI_FIRE_EOPS_MM_16_0109.pdf

2.0 27/03/2017 Updated according to SFD processing

2.1 12/06/2017
Addressing ESA comments according to

CCI_FIRE_EOPS_MM_17_0041.pdf

2.2 30/04/2018 Updated according to MODIS processing

2.3 02/11/2018
Updated according to AVHRR-LTDR processing and addressing comments of

CCI_FIRE_EOPS_MM_18_0142.pdf

2.4 11/01/2019
Addressing ESA comments according to ESA-CCI-EOPS-FIRE-MEM-18-

0200.pdf

Document Change Record

Issue Date Request Location Details

1.1 06/10/2016 ESA

Naming convention

Executive Summary

Sections 3.2, 3.3, 3.4

Reference to the year of the project added to

the name of the document.

Deleted. All section numbers were change

accordingly.

Minor changes in the text.

2.0 27/03/2017 UAH-BC All document
Inclusion of verification steps of the Small

Fire Database

2.1 12/06/2017 ESA

Sections 1.2 and 1.3

Sections 1.1, 2.1

Section 3

Section 4.1.2

Section 4.2.1

Sections 4.4.1, 4.4.2

Subdivided previous Section 1.2 into two

different sections.

Small changes in the text

New Section 3 added to better organize the

information.

Added reference to Sen2Cor code.

Added information on the purpose of each

test described in those sections.

Extended the explanation of the visual

inspection.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 4

Issue Date Request Location Details

2.2 30/04/2018 BC

All document

Section 1.4

Sections 2.3, 3.5, 4,

6.2.3, 6.3.3, 6.4.3,

7.3.3, 7.4.3

Section 7.2

Inclusion of verification steps of MODIS

processing

Document structure section deleted

New sections added

Section and sub-sections reorganized and

updated.

2.3 02/11/2018 BC

All document

Section 1.1, 6.1

Sections 2.4, 7.2.5,

7.3.4, 7.4.4

Sections 7.3.2, 7.3.3,

7.4

Inclusion of verification steps of MODIS

and AVHRR processing, use of acronyms

of BA products

Small changes in the text

Sections added

Text updated

2.4 11/01/2019

UAH

ESA

UAH

UAH, ESA

UAH

ESA

ESA

ESA

Sections 1.3, 2

Section 2.4, 3, 4.1.2,

6.1

Section 3.5

Sections 4.2, 6.2.3

Sections 6.3.4, 6.4.4

Sections 6.4.1, 6.4.3,

7.4.1, 7.4.2

Section 7.4.3

Annex 2

New references added

Text updated to reference to the processing

of the FireCCILT10 product.

Section deleted

Sections updated

New sections added

Clarification added

Figure 7.19 updated and 7.21 added

New annex added

Table of Contents

1 Introduction ... 8

 1.1 Purpose of the document ... 8

 1.2 Applicable Documents .. 8

 1.3 Reference Documents ... 8

2 Systems under test ... 9

 2.1 FireCCI41 ... 9

 2.2 FireCCISFD11 .. 9

 2.3 FireCCI50/1 .. 10

 2.4 FireCCILT10 .. 12

3 Verification approach ... 12

 3.1 Unit-level testing ... 12

 3.2 Code sanity checks .. 12

 3.3 Monitoring .. 13

 3.4 Visual inspection ... 13

4 Data Acquisition Subsystem Verification .. 13

 4.1 FireCCI50/1 .. 13

 4.2 FireCCILT10 .. 14

5 Pre-Processing Subsystem Verification ... 15

 5.1 Code sanity checks .. 15

5.1.1 FireCCI41 .. 15

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 5

5.1.2 FireCCISFD11 ... 15

 5.2 Unit-level tests .. 15

5.2.1 FireCCI41 .. 15

5.2.2 FireCCISFD11 ... 18

 5.3 Monitoring .. 18

5.3.1 FireCCI41 .. 18

5.3.2 FireCCISFD11 ... 18

 5.4 Visual inspection ... 19

5.4.1 FireCCI41 .. 19

5.4.2 FireCCISFD11 ... 19

6 BA processing subsystem verification ... 20

 6.1 Code sanity checks .. 20

 6.2 Unit-level tests .. 20

6.2.1 FireCCI41 .. 20

6.2.2 FireCCISFD11 ... 21

6.2.3 FireCCI50/1 ... 22

 6.3 Monitoring .. 22

6.3.1 FireCCI41 .. 22

6.3.2 FireCCISFD11 ... 24

6.3.3 FireCCI50/1 ... 24

6.3.4 FireCCILT10 ... 25

 6.4 Visual inspection ... 25

6.4.1 FireCCI41 .. 25

6.4.2 FireCCISFD11 ... 27

6.4.3 FireCCI50/1 ... 28

6.4.4 FireCCILT10 ... 31

7 Formatting subsystem verification .. 32

 7.1 Code sanity checks .. 32

 7.2 Unit-level tests .. 33

7.2.1 Generic tests .. 34

7.2.2 MERIS-specific tests ... 34

7.2.3 SFD-specific tests .. 36

7.2.4 MODIS-specific tests .. 37

7.2.5 AVHRR-specific tests ... 38

 7.3 Calvalus monitoring .. 38

7.3.1 FireCCI41 .. 38

7.3.2 FireCCISFD11 ... 39

7.3.3 FireCCI50/1 ... 39

7.3.4 FireCCILT10 ... 40

 7.4 Visual inspection ... 40

7.4.1 FireCCI41 .. 41

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 6

7.4.2 FireCCISFD11 ... 44

7.4.3 FireCCI50/1 ... 45

7.4.4 FireCCILT10 ... 49

Annex 1: Acronyms and Abbreviations .. 51

Annex 2: List of reference tiles and dates used for visual inspection of FireCCI41

products .. 52

List of Figures

Figure 2.1: Fire_cci Subsystems for MERIS processing .. 9

Figure 2.2: Fire_cci Subsystems SFD .. 10

Figure 2.3: Fire_cci MODIS processing cycle ... 11

Figure 2.4: Fire_cci Subsystems for MODIS processing ... 11

Figure 2.5: Fire_cci Subsystems AVHRR-LTDR .. 12

Figure 5.1: NDVI image of the daily composite of tile v08h20, 25 January 2008. 19

Figure 5.2: False-colour image of Sen2Cor result of granule 33PTK 18 Jan 2016. 20

Figure 6.1: BA output of tile v03h07, June 2008. .. 26

Figure 6.2: BA output of tile v08h20, January 2011. ... 26

Figure 6.3: BA of granule 32PKU, Feb 2016 ... 27

Figure 6.4: Reference BA of granule 32PKU, Feb 2016.. 28

Figure 6.5: MODIS test tile location .. 29

Figure 6.6: BA in tile h08v05, Oct 2008 .. 30

Figure 6.7: BA in tile h11v03, Apr 2008 .. 30

Figure 6.8: BA in tile h30v10, Nov 2008 ... 31

Figure 6.9: Global BA of FireCCILT10, July 2008. .. 31

Figure 6.10. Detail of Figure 6.9 for southern hemisphere Africa. 32

Figure 7.1: PSD compliant global BA product for June 2008. 41

Figure 7.2: PSD compliant BA product for January 2011, Africa. 41

Figure 7.3: PSD compliant global standard error for June 2008. 42

Figure 7.4: PSD compliant global fraction of observed area for June 2008. 42

Figure 7.5: PSD compliant global number of patches for June 2008 42

Figure 7.6: PSD compliant BA in LC class 10 (cropland) for June 2008. 43

Figure 7.7: PSD compliant standard error product for January 2011, Africa. 43

Figure 7.8: PSD compliant fraction of observed area for January 2011, Africa. 43

Figure 7.9: PSD compliant number of patches for January 2011, Africa. 44

Figure 7.10: PSD compliant BA in LC class 10 (cropland) for January 2011, Africa ... 44

Figure 7.11: Pixel product, Jan 2016, tile h36v16 .. 45

Figure 7.12: Pixel product with artefact ... 45

Figure 7.13: PSD compliant global BA product of Dec 2004 .. 46

Figure 7.14: PSD compliant global standard error of Dec 2004 46

Figure 7.15: PSD compliant fraction of burnable area of Dec 2004 46

Figure 7.16: PSD compliant global fraction of observed area of Dec 2004 47

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 7

Figure 7.17: PSD compliant global number of patches of Dec 2004 47

Figure 7.18: PSD compliant BA in LC class 10 (cropland) for Dec 2004 47

Figure 7.19: PSD compliant JD pixel product for March 2006, Africa. Grey pixels

indicate unburnable areas, yellow pixels indicate unobserved areas, and red pixels

indicate burned areas. ... 48

Figure 7.20: PSD compliant CL pixel product for March 2006, Africa for FireCCI50. It

is clearly visible that different MODIS input tiles show different CL values. Still,

the information correlates with the burned areas visible in the upper right of Figure

7.19. .. 48

Figure 7.21: PSD compliant CL pixel product for March 2006, Africa for FireCCI51.

Although the colour scaling is identical, the values have changed, because the

method for confidence level calculation has been improved. Also, the border

effects are not visible anymore. .. 49

Figure 7.22: Detail of PSD compliant LC pixel product for March 2006, Africa. Black

pixels indicate LC class 10, turquoise pixels indicate LC class 30, blue pixels

indicate LC class 60, orange pixels indicate LC class 120, red colour indicates LC

class 180. Occurrences of the respective pixels have been marked by respectively

coloured circles for easier visibility.. 49

Figure 7.23: Burned Area, global, February 2000 .. 50

Figure 7.24: Fraction of burnable area, February 2000 .. 50

Figure 7.25: Fraction of observed area, February 2000 ... 50

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 8

1 Introduction

1.1 Purpose of the document

This System Verification Report (SVR) documents the system verification activities of

the ESA Climate Change Initiative (CCI) Fire project for its elements used in Phase 2 of

the project. The system comprises the distributed subsystems for the burned area

product generation with pre-processing, burned area retrieval, and formatting as

described in the System Specification Document [SSD 2018].

Verification is the process to demonstrate that the system meets the specified

requirements ([ECSS-E10 2009]), i.e. that the Fire_cci system is able to generate the

burned area output products as specified in the Product Specification Document [PSD

2017] and to provide BA data to users. This comprises the identification of what shall

be verified, the definition of how it shall be verified, the execution, and the reporting on

pass or failure. Verification methods used are tests, inspection, and monitoring.

This version 2.3 of the document features the system verification of the system used to

produce the MERIS and MODIS-based global data records (FireCCI41, FireCCI50,

FireCCI51), of the system used to produce the first version of the Small Fires Dataset

(FireCCISFD11), and of the system used to format the AVHRR LTDR BA data into

global grid products (FireCCILT10).

1.2 Applicable Documents

[AD-1]

ESA Climate Change Initiative - CCI Project Guidelines. Ref. EOP-

DTEX-EOPS-SW-10-0002, issue 1.0, date of issue 05 November 2010,

available at http://cci.esa.int/filedepot_download/40/4

[AD-2] ESA Climate Change Initiative (CCI) Phase 2 Statement of Work,

prepared by ESA Climate Office, Reference CCI-PRGM-EOPS-SW-12-

0012, Issue 1.3, date of issue 24 March 2015, available at

http://www.esa-fire-cci.org/webfm_send/828

[DSWG

2015]

Data Standards Requirements for CCI data producers, CCI-PRGM-

EOPS-TN-13-0009, Victoria Bennett and Sarah James, ESA Harwell,

Issue 1.2, date of issue 24 March 2015, available at

http://cci.esa.int/sites/default/files/CCI_Data_Requirements_Iss1.2_Mar

2015.pdf

[ECSS-

E10 2009]
Space engineering – Verification, ECSS‐E‐ST‐10‐02C, ESA ESTEC,

Noordwijk, The Netherlands, 6 Mar 2009.

1.3 Reference Documents

[SSD

2018]

ESA CCI ECV Fire Disturbance: System Specification Document,

T.Storm, M. Boettcher, G.Kirches, v1.5, date of issue 30 January 2018,

available at http://www.esa-fire-cci.org/documents

[PSD

2017]

ESA CCI ECV Fire Disturbance: Product Specification Document, E.

Chuvieco, M. L. Pettinari, A. Heil and T. Storm, Issue 6.3, date of issue

5 December 2017, available at http://www.esa-fire-cci.org/documents

http://www.esa-fire-cci.org/documents

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 9

[O2.D2

2018]

G. Otón, E. Chuvieco (2018) ESA CCI ECV Fire Disturbance: O2.D2

Algorithm Theoretical Basis Document (ATBD) for AVHRR LTDR

data, version 1.1. Available from: https://www.esa-fire-

cci.org/documents

2 Systems under test

This section briefly introduces the different systems which are tested. All of these have

been described in detail in [SSD 2018] and in [O2.D2 2018].

2.1 FireCCI41

Basically, the MERIS system consists of three independent subsystems: 1) the

subsystem for pre-processing, 2) the subsystem for burned area retrieval, and 3) the

subsystem for PSD-compliant formatting. The interfaces between these subsystems are

intermediate files; see Figure 2.1 for an illustration.

Figure 2.1: Fire_cci Subsystems for MERIS processing

The three subsystems of the MERIS Fire_cci system are verified independently; the

methods of verification are adapted to the respective needs of the considered subsystem.

This section lists the general methods which have been used for verification of the

Fire_cci system. There are generally two different categories of verification: first, static

verification of the code, second, verification that the results the code generates are

correct. This second step includes the verification that the results are complete and show

meaningful values in the expected range, defined by the algorithm developers.

2.2 FireCCISFD11

Similarly, the production system responsible for the production of the Small Fires

Dataset based on Sentinel-2 (FireCCISFD11) is split into three independent subsystems,

which use intermediate files as interfaces: 1) the subsystem for pre-processing, 2) the

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 10

subsystem for burned area retrieval, and 3) the subsystem for PSD-compliant

formatting. See Figure 2.2 for an illustration.

Figure 2.2: Fire_cci Subsystems SFD

The three subsystems of the SFD Fire_cci system are verified independently in the same

way as the subsystems of the MERIS Fire_cci system.

2.3 FireCCI50/1

The MODIS processing system differs from the MERIS system and the SFD system in

two key aspects: first, the process performed in Fire_cci starts from data which has been

pre-processed by NASA, so no pre-processing is done within the MODIS system.

Second, the BA retrieval is done on JASMIN instead of Calvalus. Third, more than half

of the data has not been available from the start on the system, but needed to be

acquired.

The formatting of the BA data has been done on Calvalus. Thus, the processing cycle

depicted in Figure 2.3 was established: the data is acquired and processed by the

MODIS BA processor, whose results are repackaged in order to create small,

compressed files carrying exactly the information needed for the PSD creation, which is

downloaded to Calvalus and formatted there.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 11

Figure 2.3: Fire_cci MODIS processing cycle

Consequently, the subsystems depicted in Figure 2.4 were established.

MODIS data
acquisition

MODIS
data

BA retrieval

BA dataFormattingPSD-compliant
final results

Figure 2.4: Fire_cci Subsystems for MODIS processing

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 12

2.4 FireCCILT10

The processing system for the AVHRR-LTDR Fire_cci v1.0 (FireCCILT10) dataset

differs from the systems described in Section 2.1 to 2.3 in the main aspect that the

burned area processing was done at UAH premises, while the formatting was done at

BC. Due to the coarse resolution of the product, the size of the dataset was manageable

with a standard Personal Computer, and was processed by the same team that developed

the algorithm. The scheme depicted in Figure 2.5 was followed.

3 Verification approach

This section describes the generic verification approaches applied to the systems

described in Section 2. The exceptions are the MODIS data acquisition subsystem and

the AVHRR-LTDR subsystem, which are only tested for data completeness.

3.1 Unit-level testing

Unit-level testing is done during development of the system software, and before

deploying it to operations. The principle of unit-level testing is to decompose the

software into very small testable parts, the units, and to test each of the units. Testing in

this case means that the expected result is defined before running the code, and to check

afterwards if the actual result matches the expected result. If any test fails, the software

is not deployed until the test succeeds.

Wherever possible, unit-level testing has been performed. The following sections,

which show the actual verification, provide the results of the unit-level testing that has

been performed.

Since this verification method is applied before deploying the code, it falls into the first

category of verification.

3.2 Code sanity checks

The purpose of code sanity checks is to verify at runtime that the state of processing is

fine. Typically, input/output data, user-provided configuration parameters,

computational results and many more may be validated. If the validation fails, there are

different possibilities on how to deal with the situation: it may be considered potentially

harmful, which typically results in logging a warning, which in turn is followed by

visual inspection, or it may be considered severe, which typically stops the process.

LTDR data
acquisition

LTDR
data

BA
retrieval BA data

Formatting PSD compliant
Grid product

UAH

BC

Figure 2.5: Fire_cci Subsystems AVHRR-LTDR

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 13

Code sanity checks are designed principally, but not solely, to identify programming

errors which are only to be found at runtime; for example, if a routine expected to

compute some absolute value yields a negative value, there must be a programming

error.

If applicable, the following sections will show lists of the code sanity checks the

respective subsystems are running.

3.3 Monitoring

Monitoring is twofold: first, it is performed during runtime. As all three Fire_cci

subsystems are integrated in Calvalus, the computing cluster at Brockmann Consult, the

Calvalus monitoring applies to all three of them. In the MODIS case, only the PSD

formatting step is done on Calvalus, whilst the same principle of monitoring is done on

JASMIN for the BA production.

All three subsystems are controlled by the software package pmonitor, which allows the

creation of sub-tasks and tracks them. The typical workflow looks like this: a job, which

consists of multiple sub-tasks, is started and submitted to Calvalus. If a subtask fails, it

is re-tried on a different physical machine in the cluster, up to a configurable count. If

the subtask still fails, the error is reported back to pmonitor, which adds the job as a

failed job to a report file.

This technique allows to apply the fix, so the failed job can run fine, and re-run only the

failed jobs without having to care for an extra list of failed jobs manually. Hence, the

check to verify that the system has computed a complete output data set is to inspect the

report files, and look for failed jobs.

Second, monitoring also means to check the file output paths for completeness. It is

possible to roughly compute how many files are expected, and to compare this number

with the number of actual files.

3.4 Visual inspection

Visual inspection, as the last verification step, means to download the results, open

them with a suitable viewer software (depending on the purpose, this might be ncdump,

Panoply, ArcGIS, SNAP or similar), and have a look at the images. Moreover, the

values of arbitrarily chosen pixels have been compared to the same pixels (i.e. the pixels

at the same geo-location) of the previously created images.

This is an important step to verify that the results are sane; errors in geo-information,

scaling, tiling, data distribution and many more can easily be found with visual

inspection.

4 Data Acquisition Subsystem Verification

4.1 FireCCI50/1

This step verifies the completeness of the input dataset for the MODIS BA retrieval. As

described in [SSD 2018], there are basically two input datasets: MOD09GQ, and

MOD09GA. The MOD09GQ data was fully downloaded to the system, while the

MOD09GA data was mostly there already.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 14

First, a list of expected files which should exist on the system is created. Second, the

actually existing files are collected into a second list. Third, the lists are compared to

each other; if they differ, correctional steps have to be applied.

Two dedicated routines have been put into place, which verify the completeness of these

two datasets. Both consist of a script identifying the missing images, and of a script to

fill the gaps. These scripts work as documented in the following pseudo-code:

for each year y of the time series, do:

 for each input tile t, do:

 for each day doy in year y, do:

 if MODIS file for tile t, year y and day doy does not exist:

 write an entry to file missing-ga.out

for all entries in file missing.out, do:

 ask NASA web server if file should exist

 if file should exist:

 download and check against checksum

 else:

 mark missing file as acceptable

4.2 FireCCILT10

The database files were checked one by one with a code created to find errors in the

images, such as gap days, corrupt HDF or band, repeated images in the same day and

sensor. First, it was checked that all dates had files. Second, the existing files were

opened and the corrupt files were discarded.

The pseudo-code used for this step is:

for all dates (daily, 1982-2017):

 count the number of files on this day

 if there is a file:

 read file

 write the name of the file

 elif there are files:

 if the sensor is different:

 write file names

 else:

 the files are repeated

 write and delete the file with the first

processing date

 write the name of the file with the last

processing date

 else:

 write the name of the missing file

for existing files:

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 15

 try:

 open HDF

 for each band in HDF:

 try:

 open band

 except error:

 write corrupt band and name of HDF

 delete corrupt file

 except:

 write corrupt HDF

 delete corrupt file

5 Pre-Processing Subsystem Verification

This section shows the verification for the MERIS and the SFD pre-processing

subsystems. There is no pre-processing for MODIS or AVHRR performed within the

scope of the Fire_cci system, as the data is downloaded already pre-processed. In the

MERIS pre-processing system, unit-level testing, code sanity checks, monitoring and

visual inspection have been performed; in the SFD pre-processing system, as it employs

third-party software
1
, only monitoring and visual inspection have been performed.

5.1 Code sanity checks

5.1.1 FireCCI41

A wide number of code sanity checks have been introduced into the pre-processing

code; it is out of the scope of this document to list them all, so some hand-picked

examples are provided below. The SDR retrieval process fails if:

- some error occurs while loading the auxiliary data

- the elevation model (e.g. GETASSE) cannot be found

- the source product does not have geo-information

- the source product is missing a band

- the computed sun angles are not smaller or equal to 85.0°

5.1.2 FireCCISFD11

Describing the code sanity checks performed within the third-party software Sen2Cor is

out of the scope of this document. However, the code is open source
2
, so the code sanity

checks done within that code are available for inspection.

5.2 Unit-level tests

5.2.1 FireCCI41

The MERIS pre-processing subsystem has been extensively unit-level tested. See below

for the report. Note that the pre-processing software is part of a larger software bundle,

1
 Sen2Cor, see http://step.esa.int/main/third-party-plugins-2/sen2cor/

2
 https://github.com/umwilm/SEN2COR/tree/master/sen2cor

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 16

so only those tests relevant to the actual Fire_cci pre-processing are included in the

report.

Test the NetCDF-Writer:

Test set:

org.esa.beam.globalbedo.inversion.io.netcdf.AlbedoNc4WriterLoade

dAsServiceTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.085 sec - in

org.esa.beam.globalbedo.inversion.io.netcdf.AlbedoNc4WriterLoade

dAsServiceTest

Test that spectral albedo bands are written correctly:

Test set:

org.esa.beam.globalbedo.inversion.spectral.SpectralAlbedoTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.031 sec - in

org.esa.beam.globalbedo.inversion.spectral.SpectralAlbedoTest

Test spectral inversion code:

Test set:

org.esa.beam.globalbedo.inversion.spectral.SpectralInversionTest

--

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.053 sec - in

org.esa.beam.globalbedo.inversion.spectral.SpectralInversionTest

Test generic utils for albedo inversion computation:

Test set:

org.esa.beam.globalbedo.inversion.util.AlbedoInversionUtilsTest

--

Tests run: 14, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.601 sec - in

org.esa.beam.globalbedo.inversion.util.AlbedoInversionUtilsTest

Test generic I/O utility code:

Test set: org.esa.beam.globalbedo.inversion.util.IOUtilsTest

--

Tests run: 12, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.216 sec - in

org.esa.beam.globalbedo.inversion.util.IOUtilsTest

Test monthly weighting of albedos:

Test set:

org.esa.beam.globalbedo.inversion.util.MonthlyAlbedoTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.053 sec - in

org.esa.beam.globalbedo.inversion.util.MonthlyAlbedoTest

Test the SVD code:

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 17

Test set:

org.esa.beam.globalbedo.inversion.util.SingleValueDecompositionT

est

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.063 sec - in

org.esa.beam.globalbedo.inversion.util.SingleValueDecompositionT

est

Test some generic utility code for Broadband Directional Reflectance computation:

Test set: org.esa.beam.globalbedo.bbdr.BbdrUtilsTest

--

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.085 sec - in org.esa.beam.globalbedo.bbdr.BbdrUtilsTest

Test the lookup table for gaseous corrections:

Test set: org.esa.beam.globalbedo.bbdr.GasLookupTableTest

--

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.138 sec - in org.esa.beam.globalbedo.bbdr.GasLookupTableTest

Test some meta information of single pixel processor:

Test set:

org.esa.beam.globalbedo.bbdr.GlobalbedoLevel2SinglePixelTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.085 sec - in

org.esa.beam.globalbedo.bbdr.GlobalbedoLevel2SinglePixelTest

Test different look-up tables for MERIS processing:

Test set: org.esa.beam.globalbedo.bbdr.MerisLutTest

--

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.855 sec - in org.esa.beam.globalbedo.bbdr.MerisLutTest

Test azimuth and zenith angles computation:

Test set: org.esa.beam.globalbedo.bbdr.MeteosatGeometryTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.054 sec - in org.esa.beam.globalbedo.bbdr.MeteosatGeometryTest

Test NetCDF writer of bbdr data:

Test set:

org.esa.beam.globalbedo.bbdr.netcdf.BbdrNc4WriterLoadedAsService

Test

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.153 sec - in

org.esa.beam.globalbedo.bbdr.netcdf.BbdrNc4WriterLoadedAsService

Test

Test operator for land-cover quality analysis:

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 18

Test set: org.esa.beam.landcover.LcQaOpTest

--

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.786 sec - in org.esa.beam.landcover.LcQaOpTest

Test writing of geocoding:

Test set: org.esa.beam.landcover.ScripGeocodingWriterTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.935 sec - in org.esa.beam.landcover.ScripGeocodingWriterTest

Test cloud detection:

Test set: org.esa.beam.landcover.UclCloudDetectionTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.069 sec - in org.esa.beam.landcover.UclCloudDetectionTest

5.2.2 FireCCISFD11

Describing unit-level testing performed within the third-party software Sen2Cor, if

existing, is out of the scope of this document.

5.3 Monitoring

5.3.1 FireCCI41

The report file shows the following:

thomas@master01:~/fire-inst/meris-attic $ cat l23.status

495 created, 0 running, 0 backlog, 495 processed, 0 failed

This looks reasonable: the l23 consists of the steps “SDR”, “SR”, and “nccopy”, where

SDR is run for each month, SR is run for each 10 days, and nccopy is run for each year.

So the expected output is 10 * 12 + 10 * 365/10 + 10 (10 years times each month plus

10 years times the number of days in a year divided by 10, plus 10 years of nccopy) =

495.

5.3.2 FireCCISFD11

The report file for the Sentinel-2 pre-processing shows the following:

thomas@master01:~/fire-inst $ cat s2.status

4720 created, 0 running, 0 backlog, 4720 processed, 0 failed

The granularity of the pre-processing is tile-based. Note that as Sentinel-2 calls its tiles

‘granules’, this term will be further used in this document. There are 2360 different

granules needed to create the SFD. As the pre-processing step is twofold, consisting of

the run of Sen2cor and an additional potential merging of same-granule inputs, the

number of 4720 successfully processed requests is the expected one (= 2* 2360).

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 19

5.4 Visual inspection

5.4.1 FireCCI41

There have been a number of random sample checks; Figure 5.1 shows an example for

one of the inspected files. For verification, this and similar images have been sent to the

algorithm developers in GeoTiff format; the algorithm developers verified successfully

that the values are within the expected range and that there are no obvious shifts in the

geo-location. The verification has been performed in the way that the algorithm

developers created a hidden reference file before, and compared it to the results, in order

to allow for a non-biased verification. No substantial deviations have been detected.

Figure 5.1: NDVI image of the daily composite of tile v08h20, 25 January 2008.

5.4.2 FireCCISFD11

Similarly, visual inspection has been done with the Sentinel-2 pre-processing results.

Multiple files have been randomly checked by the system administrator and by the

algorithm developers; the algorithm developers verified successfully that the values are

within the expected range and that there are no obvious shifts in the geo-location. The

verification has been performed in the way that the algorithm developers created a

hidden reference file before, and compared it to the results, in order to allow for a non-

biased verification. No substantial deviations have been detected. See Figure 5.2 for an

example image.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 20

Figure 5.2: False-colour image of Sen2Cor result of granule 33PTK 18 Jan 2016.

6 BA processing subsystem verification

6.1 Code sanity checks

The code sanity checks in the BA processing subsystems of MERIS, MODIS, and the

SFD are intentionally simple: if anything goes wrong, the process is stopped and an

error message as well as all intermediate data is output.

This happens, for example, if the input data is corrupt or the auxiliary data files cannot

be found.

As the following sections show, these errors have not occurred in the final processing of

the data set.

6.2 Unit-level tests

6.2.1 FireCCI41

The BA processing software has been unit-level tested by the algorithm developers. The

unit-level testing has been performed by running scripts which compared the results of

the algorithm for controlled areas with measurements for those areas taken before.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 21

6.2.2 FireCCISFD11

The BA processing software is a Java re-implementation of the original implementation,

which was done in Python. In order to ensure that correct results are created, a large

number of JUnit
3
 tests have been successfully performed. See below for the output of

the test reports:

Test the reader code of the active fires:

Test set: org.esa.cci.fire.s2ba.ActiveFireReaderTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0.593 sec

Test the ccl code:

Test set: org.esa.cci.fire.s2ba.ConnectedComponentLabelingTest

--

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.001 sec

Test the convolution code:

Test set: org.esa.cci.fire.s2ba.ConvoluterTest

--

Tests run: 3, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0.442 sec

Test the dilation code:

Test set: org.esa.cci.fire.s2ba.DilaterTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.001 sec

Test the hole removal code:

Test set: org.esa.cci.fire.s2ba.HoleRemoverTest

--

Tests run: 7, Failures: 0, Errors: 0, Skipped: 3, Time elapsed:

0.001 sec

Test the S2 Burned Area algorithm:

Test set: org.esa.cci.fire.s2ba.S2BaAlgorithmTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0 sec

Test the finalising BA mapper code:

Test set: org.esa.cci.fire.s2ba.S2BaPostMapperTest

--

Tests run: 10, Failures: 0, Errors: 0, Skipped: 7, Time elapsed:

1.15 sec

3
 http://junit.org/

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 22

Test the mask code:

Test set: org.esa.cci.fire.s2ba.SclMaskTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.963 sec

Test the generic tool code:

Test set: org.esa.cci.fire.s2ba.ToolsTest

--

Tests run: 7, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec

Note that the large number of “skipped” tests does not imply any cover-up of failures;

rather, these tests have been used to create intermediate result files for visual

inspections, and are therefore skipped in the production chain.

6.2.3 FireCCI50/1

The BA retrieval code has not been unit-level tested. It has been written by scientists,

who are not familiar with the concept of unit-level testing. However, algorithm

developers have analysed the special scenarios where the code is supposed to work.

Apart from the study sites (MODIS tiles) used for the theoretical development of the

algorithm, other tiles were processed in order to ensure the proper performance of the

code. So a test sample was designed selecting those tiles that represent a special case.

Thanks to that test sample all the expected errors were handled by adding conditional

code fragments (example below), but also try/exception blocks. Those special cases

include missing images, no HS available, corrupt image, etc.

if no_images:

 print “No images have been found in the file system”

 sys.exit()

Besides, the special cases that were not expected at the beginning progressively

appeared during the test processing carried out during the implementation of the code at

the System Engineers’ premises. Those unexpected errors were properly handled in the

algorithm code. As a consequence, the final version of the code reported no errors

related to the code itself and was successfully processed globally for the whole time

series.

6.3 Monitoring

6.3.1 FireCCI41

The status after running all BA retrieval jobs:

thomas@master01:~/fire-inst/meris-attic $ cat fire.status

4440 created, 0 running, 0 backlog, 4440 processed, 0 failed

This shows that all BA retrieval jobs have run successfully.

Also, this tells the operator that the expected count of result files is 4440; since there

may be several tif files, we rather count the log files:

thomas@feeder01:/calvalus/projects/fire/meris-ba $ find . -name

"*BA-v4.05.log" | wc -l

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 23

4440

There has also been an extra verification step added, as the process sometimes failed

while claiming it did not fail for an unknown reason – this was developed because the

number of result files was observed to be less than expected. In such cases, a file entry

has been made to a dedicated “error”-directory, outputting the intermediate data

(“auxdata”) for investigation. Hence, the check if everything has been computed

correctly is to a) either check if the error-directory is empty, or, if it is not, that for each

entry in the error directory there is a later result file.

thomas@feeder01:/calvalus/projects/fire/errors$ ls -ltr

-rw-rw-r-- 1 yarn bc 199603161 Jun 10 23:36 auxdata-2011-

v05h30.tar.gz

-rw-rw-r-- 1 yarn bc 1788310194 Jun 10 23:40 auxdata-2011-

v11h32.tar.gz

This shows that there have been two erroneous processing runs, so the result files’

timestamp must be checked:

thomas@feeder01:/calvalus/projects/fire$ ls -l meris-

ba/2011/*v05h30*.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 00:07 meris-

ba/2011/BA_PIX_MER_v05h30_201104_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 00:07 meris-

ba/2011/BA_PIX_MER_v05h30_201105_v4.1.tif

thomas@feeder01:/calvalus/projects/fire$ ls -l meris-

ba/2011/*v11h32*.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201101_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201102_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201103_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201104_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201105_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201106_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201107_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201108_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201109_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201110_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201111_v4.1.tif

-rw-rw-r-- 1 thomas bc 155549260 Jun 11 02:51 meris-

ba/2011/BA_PIX_MER_v11h32_201112_v4.1.tif

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 24

The timestamps of all result files are later than the timestamp of the files indicating the

error, so they have been successfully re-processed.

6.3.2 FireCCISFD11

The status of the processing subsystem after running all BA retrieval jobs of the SFD

shows:

thomas@master01:~/fire-inst $ cat s2-ba.status

2360 created, 0 running, 0 backlog, 2360 processed, 0 failed

This shows that all 2360 BA retrieval jobs have run successfully – one for each

considered granule:

thomas@master01:~/fire-inst $ cat s2-tiles.txt | wc -l

2360

Also, in order to check that data has been produced, it is possible to count the produced

burned-area files per granule:

1) Count the retrieved BA images per granule and store the result:

for t in $(ls -d T*) ; do echo "#BA in tile $t=$(ls $t/BA* | wc

-l)" ; done > BA-per-tile.out

2) Check that 0 tiles with a BA image count of 0 are existing:

grep =0 BA-per-tile.out | wc -l

0

6.3.3 FireCCI50/1

Running BA retrieval jobs creates status files. Thus, for each continental cycle there is a

status file. The number of successfully processed jobs should match the number of years

to process (2000 – 2016 = 17)
4
 times the number of MODIS tiles in that continental

zone:

Continental zone # tiles # processing jobs

Africa 41 697

Asia 69 1173

Australia 34 578

Europe 15 255

North America 38 646

South America 58 986

cat modis—africa.status

697 created, 0 running, 0 backlog, 697 processed, 0 failed

cat modis—asia.status

1173 created, 0 running, 0 backlog, 1173 processed, 0 failed

cat modis—australia.status

4
 Note that although the data of year 2000 has been processed, the resulting images are empty.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 25

578 created, 0 running, 0 backlog, 578 processed, 0 failed

cat modis—europe.status

255 created, 0 running, 0 backlog, 255 processed, 0 failed

cat modis—namerica.status

646 created, 0 running, 0 backlog, 646 processed, 0 failed

cat modis—samerica.status

986 created, 0 running, 0 backlog, 986 processed, 0 failed

This shows that all BA retrieval jobs have run successfully.

6.3.4 FireCCILT10

The code checks that the files were created or the programme stops. It counted the

existing files and verified that they were correct (36 years x 12 months = 432 files) for

the whole time series for each of the intermediate and final products. In the case of

1994, in the months when there is no data, the files were still created, but with empty

data.

for year in the time series:

for month in the year:

 if the file exist:

 write file name

 file number +=1

 else:

 stop

6.4 Visual inspection

6.4.1 FireCCI41

Some dedicated samples have been visually inspected, as well as some random samples.

For dedicated checks, tile v03h07 of June 2008 located in Northern Canada was chosen

by the algorithm developers. This particular region has been chosen because it is a

boreal forest region in which small fires (< 200 ha) predominate, although large fires

account the great part of the total BA. The perimeters are provided by the Canadian

National Fire Database (CNFDB). The result image (configured to show only BA with a

slightly transparent world map in the background, with – arbitrarily chosen – different

colours indicating different days of burn) is shown in Figure 6.1. The verification has

been performed in the way that the algorithm developers created a hidden reference file

before, and compared it to the results, in order to allow for a non-biased verification. No

substantial deviations have been detected.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 26

Figure 6.1: BA output of tile v03h07, June 2008.

Also, some other random samples have been chosen to be inspected, mostly in African

tiles where there are many burns, such as tile v08h20 at January 2011. The selection of

date and location was made by the algorithm developers, based on previously gathered

experience. The result image is shown in Figure 6.2 (configured to show only BA with a

slightly transparent world map in the background, with – arbitrarily chosen – different

colours indicating different days of burn).

Figure 6.2: BA output of tile v08h20, January 2011.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 27

Note that these are examples for burned area only, while there have been visual

inspection checks also covering other parameters. The other tests performed to the

random sampled data (all files tested are listed in Annex 2) were:

- The number and location of the pixels classified as burned must be the same as

the ones calculated by the algorithm developers when running the algorithm at

their premises.

- Value range: the values of layers must be 0 ≤ day of burn ≤ 366; confidence

level ≥ 0; 0 ≤ land cover class ≤ 180, and they must be equal to the values

calculated by the algorithm developers when running the algorithm at their

premises.

- Geographic extent of each file must correspond to the coordinates specified in

[PSD 2017].

6.4.2 FireCCISFD11

Multiple sample granules were defined by the algorithm developers; visual inspection

has been done on these granules. These 49 tile samples were chosen due to the different

land covers they contain (from tree covers and shrublands to croplands and urban areas,

according to the ESA CCI Land Cover map of year 2015) and the large burned surface

in the 2015-2016 fire season with a high variability on fire sizes (according to the SFD).

Figure 6.3 shows an example result image of BA retrieved data; the Sentinel-2 granule

is 32PKU (at around 12° N 6.5° W). The verification has been performed in the way

that the algorithm developers created that hidden reference file before, and compared it

to the results, in order to allow for a non-biased verification. No substantial deviations

have been detected. An image of the hidden reference file is provided in Figure 6.4; the

slight differences have been classified as acceptable by the algorithm developers, as

different libraries have been used between the production code, which is written in Java,

and the development code, which has been delivered in Python.

Figure 6.3: BA of granule 32PKU, Feb 2016

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 28

Figure 6.4: Reference BA of granule 32PKU, Feb 2016

This is only an example; many other dates have been chosen for inspection, covering

the 49 granules listed in Table 1. This list, as well as the selection of dates has been

made by the algorithm developers, based on previously gathered experiences. Before

producing the final dataset, the algorithm developers confirmed for all of the files that

have been visually inspected that they look as expected in terms of value range, pixel

distribution, and geographic extent.

Table 1: Sentinel-2 BA sample granules

30NYL 30PYS 31NCH 31NFF 31PDK

30NYM 30PZQ 31NCJ 31NFG 31PDL

30NYN 30PZR 31NDF 31NFH 31PDM

30NYP 30PZS 31NDG 31NFJ 31PEK

30NZL 31NBF 31NDH 31PBK 31PEL

30NZM 31NBG 31NDJ 31PBL 31PEM

30NZN 31NBH 31NEF 31PBM 31PFK

30NZP 31NBJ 31NEG 31PCK 31PFL

30PYQ 31NCF 31NEH 31PCL 31PFM

30PYR 31NCG 31NEJ 31PCM

6.4.3 FireCCI50/1

Three test tiles have been identified for visual inspection: h08v05, h11v03, and h30v10.

See Figure 6.5 for the location of these tiles on a world map.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 29

Figure 6.5: MODIS test tile location

Tile h30v10 is located in the North of Australia, which is a tropical savanna region that

is characterised for its high fire occurrence and large fires. The North Australian Fire

Information (NAFI) provides the perimeter data.

Tile h11v03 covers a boreal forest region, see Section 6.4.1 for the justification.

In tile h08v05, Mediterranean and temperate forests and also shrublands are mainly

found. It is a relatively high fire occurrence region. Fire and Resource Assessment

Program (FRAP) of California provides state level fire perimeters.

For these three tiles, the whole year 2008 has been processed for inspection. Examples

of resulting images (configured to show BA in red, non-burned area in green, non-

burnable areas in blue, and unobserved areas in yellow, the latter corresponding to

pixels with sensor failure, clouds and cloud shadows(extracted from the quality flags of

the input data)) are shown in Figure 6.6 - Figure 6.8. The verification has been

performed in the way that the algorithm developers created a hidden reference file

before, and compared it to the results, in order to allow for a non-biased verification. No

deviations have been detected.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 30

Figure 6.6: BA in tile h08v05, Oct 2008

Figure 6.7: BA in tile h11v03, Apr 2008

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 31

Figure 6.8: BA in tile h30v10, Nov 2008

6.4.4 FireCCILT10

All burned area images were visually checked by the algorithm developers to verify

they had data. They were opened manually in QGIS and the data was checked (with a

color palette of blue-yellow-red from lowest to highest BA). The presence of data was

verified, as well as its coherence with other existing BA products (Figure 6.9 and Figure

6.10)

Figure 6.9: Global BA of FireCCILT10, July 2008.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 32

Figure 6.10. Detail of Figure 6.9 for southern hemisphere Africa.

7 Formatting subsystem verification

The formatting subsystem is used to generate the PSD compliant products from the

burned area data produced using the BA processing subsystem.

7.1 Code sanity checks

As it is the last step of processing, and the actual user products are created here, lots of

effort has been put into creating code sanity checks in the formatting subsystem. Note

that these checks apply to the MERIS, the MODIS, the AVHRR, and the SFD

production subsystem.

Most prominently, the actual data is checked several times in the processing of the grid

product, because the aggregation happens in this step, which is the most error-prone part

of the formatting:

1) If the computed area for any of the cells has negative size, there must have been a

programming error somewhere else; the processing is stopped. Code:

private static void validate(double area, int index) {

 if (area < 0) {

 throw new IllegalStateException("area < 0 at target pixel "

+ index); }}

2) If any cell has a positive error value, while it also has a zero BA value, the input

data must be wrong, or there must have been a programming error; the processing

is stopped. Code:

private static void validate(float[] errors, float[] ba) {

 for (int i = 0; i < errors.length; i++) {

 float error = errors[i];

 if (error > 0 && !(ba[i] > 0)) {

 throw new IllegalStateException("error > 0 && !(ba[i] >

0)"); } }}

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 33

3) If the total burned area of a cell differs from the sum of burned area in each land

cover class by more than 5%, the considered data must be wrong, or there must

have been a programming error; the processing is stopped. Code:

private static void validate(float[] ba, List<float[]> baInLc) {

 int baCount = (int) IntStream.range(0, ba.length).mapToDouble(i -

> ba[i]).filter(i -> i != 0).count();

 if (baCount < ba.length * 0.05) {

 // don't throw an error for too few observations

 return; }

 float baSum = (float) IntStream.range(0, ba.length).mapToDouble(i

-> ba[i]).sum();

 float baInLcSum = 0;

 for (float[] floats : baInLc) {

 baInLcSum += IntStream.range(0, floats.length).mapToDouble(i

-> floats[i]).sum(); }

 if (Math.abs(baSum - baInLcSum) > baSum * 0.05) {

 CalvalusLogger.getLogger().warning("Math.abs(baSum -

baInLcSum) > baSum * 0.05:");

 CalvalusLogger.getLogger().warning("baSum = " + baSum);

 CalvalusLogger.getLogger().warning("baInLcSum " + baInLcSum);

 throw new IllegalStateException("Math.abs(baSum - baInLcSum)

> baSum * 0.05"); }}

4) When predicting the error, ensure that there are as many burned area pixels as area

values; if this cannot be ensured, there must have been a programming error. Code:

float[] predictError(float[] burnedAreaInSquareMeters, double[]

cellSizeInSquareMeters) throws ScriptException {

 if (burnedAreaInSquareMeters.length !=

cellSizeInSquareMeters.length) {

 throw new IllegalArgumentException("For each burned area pixel

there must be exactly one cell size value."); }

[…]

Also, there are a large number of easier checks that are also performed, for example the

following:

 validate LC class; if not in Fire-LC-classes, fail

 validate input data: if not of correct size, fail

 validate "status" band of pre-processed data: if not existing or cannot be read, fail

 validate error prediction model: if it cannot be executed, fail

 validate error prediction process: if anything within process fails, fail whole

formatting process

 validate input year: if not in 2002-2012 (MERIS) or 2015/2016 (SFD), fail

 validate geo-coding: if geo-coding cannot be applied, fail

7.2 Unit-level tests

There are a large amount of unit-level tests ensuring the correctness of the process. See

the sections below for the respective report of running these tests, valid for the MERIS,

the MODIS, and the SFD production.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 34

7.2.1 Generic tests

Test common utils:

--

Test set: com.bc.calvalus.processing.fire.format.CommonUtilsTest

--

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.001 sec - in

com.bc.calvalus.processing.fire.format.CommonUtilsTest

Test the generic data source for grid product generation:

Test set:

com.bc.calvalus.processing.fire.format.grid.AbstractFireGridData

SourceTest

--

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.grid.AbstractFireGridData

SourceTest

Test the generic mapper for grid product generation:

Test set:

com.bc.calvalus.processing.fire.format.grid.AbstractGridMapperTe

st

--

Tests run: 4, Failures: 0, Errors: 0, Skipped: 2, Time elapsed:

0.005 sec - in

com.bc.calvalus.processing.fire.format.grid.AbstractGridMapperTe

st

Test the area calculation code:

Test set:

com.bc.calvalus.processing.fire.format.grid.AreaCalculatorTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.474 sec - in

com.bc.calvalus.processing.fire.format.grid.AreaCalculatorTest

Test generic utility code for grid product generation:

Test set:

com.bc.calvalus.processing.fire.format.grid.GridFormatUtilsTest

--

Tests run: 3, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0.137 sec - in

com.bc.calvalus.processing.fire.format.grid.GridFormatUtilsTest

7.2.2 MERIS-specific tests

Test the error prediction code:

Test set:

com.bc.calvalus.processing.fire.format.grid.ErrorPredictorTest

--

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 35

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

1.301 sec - in

com.bc.calvalus.processing.fire.format.grid.ErrorPredictorTest

Test the specific data source for MERIS data:

Test set:

com.bc.calvalus.processing.fire.format.grid.meris.MerisDataSourc

eTest

--

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.011 sec - in

com.bc.calvalus.processing.fire.format.grid.meris.MerisDataSourc

eTest

Test the specific input format for MERIS grid formatting:

Test set:

com.bc.calvalus.processing.fire.format.grid.meris.MerisGridInput

FormatTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.001 sec - in

com.bc.calvalus.processing.fire.format.grid.meris.MerisGridInput

FormatTest

Test the specific mapper for MERIS grid products:

Test set:

com.bc.calvalus.processing.fire.format.grid.meris.MerisGridMappe

rTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.grid.meris.MerisGridMappe

rTest

Test the specific reducer for MERIS grid products:

Test set:

com.bc.calvalus.processing.fire.format.grid.meris.MerisGridReduc

erTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.grid.meris.MerisGridReduc

erTest

Test the specific factory for MERIS NetCDF files:

Test set:

com.bc.calvalus.processing.fire.format.grid.meris.MerisNcFileFac

toryTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0.001 sec - in

com.bc.calvalus.processing.fire.format.grid.meris.MerisNcFileFac

toryTest

Test the specific input format for MERIS pixel product:

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 36

Test set:

com.bc.calvalus.processing.fire.format.pixel.meris.MerisPixelInp

utFormatTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.pixel.meris.MerisPixelInp

utFormatTest

Test the specific MergeMapper for MERIS pixel products:

Test set:

com.bc.calvalus.processing.fire.format.pixel.meris.MerisPixelMer

geMapperTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.pixel.meris.MerisPixelMer

geMapperTest

Test the specific reducer for MERIS pixel products:

Test set:

com.bc.calvalus.processing.fire.format.pixel.meris.MerisPixelRed

ucerTest

--

Tests run: 10, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.pixel.meris.MerisPixelRed

ucerTest

7.2.3 SFD-specific tests

Test the specific data source for SFD data:

Test set:

com.bc.calvalus.processing.fire.format.grid.s2.S2FireGridDataSou

rceTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.grid.s2.S2FireGridDataSou

rceTest

Test the specific input format for SFD grid formatting:

Test set:

com.bc.calvalus.processing.fire.format.grid.s2.S2GridInputFormat

Test

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.grid.s2.S2GridInputFormat

Test

Test the aggregator which produces SFD pixel products:

Test set:

com.bc.calvalus.processing.fire.format.pixel.s2.JDAggregatorTest

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 37

--

Tests run: 18, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.pixel.s2.JDAggregatorTest

Test the Mapper which finalises the SFD pixel products:

Test set:

com.bc.calvalus.processing.fire.format.pixel.s2.S2FinaliseMapper

Test

--

Tests run: 8, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

59.506 sec - in

com.bc.calvalus.processing.fire.format.pixel.s2.S2FinaliseMapper

Test

Test the SFD aggregation strategy:

Test set: com.bc.calvalus.processing.fire.format.S2StrategyTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0 sec - in com.bc.calvalus.processing.fire.format.S2StrategyTest

7.2.4 MODIS-specific tests

Test the MODIS data source for grid products:

Test set:

com.bc.calvalus.processing.fire.format.grid.modis.ModisFireGridD

ataSourceTest

--

Tests run: 8, Failures: 0, Errors: 0, Skipped: 2, Time elapsed:

0.545 sec - in

com.bc.calvalus.processing.fire.format.grid.modis.ModisFireGridD

ataSourceTest

Test the input format for MODIS grid formatting:

Test set:

com.bc.calvalus.processing.fire.format.grid.modis.ModisGridInput

FormatTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.grid.modis.ModisGridInput

FormatTest

Test the specific MODIS grid mapper:

Test set:

com.bc.calvalus.processing.fire.format.grid.modis.ModisGridMappe

rTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:

0.913 sec - in

com.bc.calvalus.processing.fire.format.grid.modis.ModisGridMappe

rTest

Test the specific MODIS pixel aggregator:

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 38

Test set:

com.bc.calvalus.processing.fire.format.pixel.modis.ModisJDAggreg

atorTest

--

Tests run: 14, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0 sec - in

com.bc.calvalus.processing.fire.format.pixel.modis.ModisJDAggreg

atorTest

7.2.5 AVHRR-specific tests

Test the data source for AVHRR grid formatting:

Test set:

com.bc.calvalus.processing.fire.format.grid.avhrr.AvhrrFireGridD

ataSourceTest

--

Tests run: 4, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

27.855 sec - in

com.bc.calvalus.processing.fire.format.grid.avhrr.AvhrrFireGridD

ataSourceTest

Test the input format for AVHRR grid formatting:

Test set: com.bc.calvalus.processing.fire.format.grid.avhrr.

AvhrrGridInputFormatTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0

sec - in

com.bc.calvalus.processing.fire.format.grid.avhrr.AvhrrGridInputFor

matTest

Test the specific AVHRR grid mapper:

Test set: com.bc.calvalus.processing.fire.format.grid.avhrr.

AvhrrGridMapperTest

--

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.007 sec - in

com.bc.calvalus.processing.fire.format.grid.avhrr.AvhrrGridMapperTe

st

Test the specific AVHRR aggregation mode:

Test set: com.bc.calvalus.processing.fire.format.grid.avhrr.

CollocationOpTest

--

Tests run: 1, Failures: 0, Errors: 0, Skipped: 1, Time elapsed: 0

sec - in

com.bc.calvalus.processing.fire.format.grid.avhrr.CollocationOpTest

7.3 Calvalus monitoring

7.3.1 FireCCI41

There are two different Calvalus workflows for the formatting: one controls the

processing of the grid product, the other controls the processing of the pixel product.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 39

For the grid product, the expected number of output files is 2 * 7 * 12 (two files a

month, 2005-2011) = 168 files. This is what we find in the report:

thomas ~/fire-inst (FIRE)$ cat grid-format.status

168 created, 0 running, 0 backlog, 168 processed, 0 failed

Also, looking into the result file system shows the same amount of files:

thomas@feeder01:/calvalus/projects/fire/meris-PSD$ find -name

"*nc" | wc -l

168

For the pixel product, the expected number of output files is 6 * 12 * 7 (6 zones each

month, 2005-2011) = 504 files. This is what we find in the report:

thomas ~/fire-inst (FIRE)$ cat pixel-format.status

504 created, 0 running, 0 backlog, 504 processed, 0 failed

Also, looking into the result file system shows the same amount of files:

thomas@feeder01:/calvalus/projects/fire/meris-PSD-pixel$ find -

name "*AREA*.tar.gz" | wc -l

504

In order to check the file sizes, it has been ensured that – apart from the control files

created by Calvalus – there are no zero-sized result files:

thomas@feeder01:/calvalus/projects/fire/meris-PSD $ find . -size

0 | grep -v _SUCCESS | grep -v part-r-00000 | wc -l

0

thomas@feeder01:/calvalus/projects/fire/meris-PSD-pixel $ find .

-size 0 | grep -v _SUCCESS | grep -v part-m-00000 | grep -v

part-r-00000 | wc -l

0

7.3.2 FireCCISFD11

Similarly to the MERIS case, there are two kinds of Calvalus workflow for the

formatting: one for the processing of the grid product, the other for processing of the

pixel product. For the pixel product, the expected number of outputs is 116 * 12 (116 5-

degree-areas, 12 months) = 1392 files. This is what the report states:

thomas ~/fire-inst (FIRE)$ cat s2-pixel.status

1392 created, 0 running, 0 backlog, 1392 processed, 0 failed

For the grid product, the expected number of outputs is simply 12: one for each month

of 2016. This is the output of the processing report:

thomas ~/fire-inst (FIRE)$ cat s2-grid.status

12 created, 0 running, 0 backlog, 12 processed, 0 failed

7.3.3 FireCCI50/1

As for the other formatting cycles, there are two different Calvalus workflows for the

formatting: one controls the processing of the grid product, the other controls the

processing of the pixel product.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 40

For the grid product, using the example of FireCCI51, the expected number of output

files is 17 * 12 + 1 (one file a month, Dec 2000 - Dec 2017) = 205 files. This is what we

find in the report:

thomas ~/fire-inst (FIRE)$ cat modis-grid.status

205 created, 0 running, 0 backlog, 206 processed, 0 failed

Also, looking into the result file system shows the same amount of files:

thomas@feeder01:/calvalus/projects/fire/modis-grid$ find -name

"*nc" | wc -l

205

For the pixel product, the expected number of output files is 6 * 17 * 12 + 6 (6 zones

each month, Dec 2000- Dec 2017) = 1230 files. This is what we find in the report:

thomas ~/fire-inst (FIRE)$ cat modis-pixel.status

1230 created, 0 running, 0 backlog, 1230 processed, 0 failed

Also, looking into the result file system shows the same amount of files:

thomas@feeder01:/calvalus/projects/fire/modis-pixel $ hdfs dfs -

find `pwd` -name "*fv5.1-JD*" | wc -l

1230

In order to check the file sizes, it has been ensured that – apart from the control files

created by Calvalus – there are no zero-sized result files:

thomas@feeder01:/calvalus/projects/fire/modis-grid $ find . -

size 0 | grep -v _SUCCESS | grep -v part-r-00000 | wc -l

0

thomas@feeder01:/calvalus/projects/fire/modis-pixel $ find . -

size 0 | grep -v _SUCCESS | grep -v part-m-00000 | grep -v part-

r-00000 | wc -l

0

7.3.4 FireCCILT10

There is only a single Calvalus workflow for the formatting, which controls the

processing of the grid product.

For this product, the expected number of output files is 36 * 12 - 8 (Jan 1982 - Dec

2017, May-Dec 1994 missing) = 424 files. This is what we find in the report:

thomas ~/fire-inst (FIRE)$ cat avhrr-grid.status

432 created, 0 running, 0 backlog, 424 processed, 8 failed

So all files for which there are input data have been successfully processed.

7.4 Visual inspection

The PSD-compliant products have been thoroughly verified by the algorithm developers

and the project manager of the project, to assure that all the layers of the products

comply with the PSD specifications. Some examples of the visual inspection are shown

below. The products were evaluated by the revisers, a report was sent to the system

engineer, he performed the corrections, and then the revisers evaluated the outputs and

updated the report. This process was done iteratively until all layers complied with the

specifications.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 41

7.4.1 FireCCI41

See below for sample images of the first half of June, 2008, globally (Figure 7.1), and

January 2011, Africa (Figure 7.2); both images are configured to show only BA with a

slightly transparent world map in the background, with – arbitrarily chosen – different

colours indicating different days of burn. Apart from these sample images confidence

level, distribution of Land Cover classes and – in the case of the grid product – number

of patches and observed area fraction have also been inspected. See Figure 7.3 to Figure

7.10 for examples.

Date and location were chosen by the algorithm developers, based on previously

gathered experience. The images have been compared to reference data kept by the

algorithm developers, and have been confirmed as showing the expected results. The

full list of tiles and years is provided in Annex 2.

Figure 7.1: PSD compliant global BA product for June 2008.

Figure 7.2: PSD compliant BA product for January 2011, Africa.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 42

Figure 7.3: PSD compliant global standard error for June 2008.

Figure 7.4: PSD compliant global fraction of observed area for June 2008.

Figure 7.5: PSD compliant global number of patches for June 2008

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 43

Figure 7.6: PSD compliant BA in LC class 10 (cropland) for June 2008.

Figure 7.7: PSD compliant standard error product for January 2011, Africa.

Figure 7.8: PSD compliant fraction of observed area for January 2011, Africa.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 44

Figure 7.9: PSD compliant number of patches for January 2011, Africa.

Figure 7.10: PSD compliant BA in LC class 10 (cropland) for January 2011, Africa

7.4.2 FireCCISFD11

Visual inspection of the SFD products were done for multiple pixel products. See

Figure 7.11 for a sample image of January 2016, pixel product tile h36v16, configured

to show only BA with a slightly transparent world map in the background, with –

arbitrarily chosen – different colours indicating different days of burn. Apart from these

sample images, confidence level and distribution of Land Cover classes have also been

inspected.

Date and location were chosen by the algorithm developers, based on previously

gathered experience. The images have been compared to reference data kept by the

algorithm developers, and have been confirmed as showing the expected results.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 45

Figure 7.11: Pixel product, Jan 2016, tile h36v16

Multiple artefacts have been identified using the visual inspection (see Figure 7.12 for

an example). All these artefacts could be tracked to the Sen2Cor 2.2.3 pre-processing,

which introduced these kinds of errors, and could not be fixed in the processing cycle.

These errors were informed to the Sen2Cor developers, but for technical reasons

(performance, processing time, and schedule) it was not possible to wait until a fixed

version was developed to process FireCCISFD11.

Figure 7.12: Pixel product with artefact

7.4.3 FireCCI50/1

Similarly to the MERIS dataset, there has also been validation done by visual inspection

and comparison with the BA data, apart from consistency checks performed through

python scripts by the algorithm developers. This has been done for a random selection

of pixel products in each zone, and for all grid products. See below for sample images

of the grid product of December, 2004, globally (Figure 7.13 to Figure 7.18).

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 46

Figure 7.13: PSD compliant global BA product of Dec 2004

Figure 7.14: PSD compliant global standard error of Dec 2004

Figure 7.15: PSD compliant fraction of burnable area of Dec 2004

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 47

Figure 7.16: PSD compliant global fraction of observed area of Dec 2004

Figure 7.17: PSD compliant global number of patches of Dec 2004

Figure 7.18: PSD compliant BA in LC class 10 (cropland) for Dec 2004

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 48

Figures Figure 7.19 to Figure 7.22 show the values for a sample pixel product (Africa in

March 2006) corresponding to FireCCI50, which has been used for validation with the

non-aggregated data the BA algorithm produced.

All data have been confirmed as showing the expected results.

Figure 7.19: PSD compliant JD pixel product for March 2006, Africa. Grey pixels indicate
unburnable areas, yellow pixels indicate unobserved areas, and red pixels indicate

burned areas.

Figure 7.20: PSD compliant CL pixel product for March 2006, Africa for FireCCI50. It is
clearly visible that different MODIS input tiles show different CL values. Still, the

information correlates with the burned areas visible in the upper right of Figure 7.19.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 49

Figure 7.21: PSD compliant CL pixel product for March 2006, Africa for FireCCI51.
Although the colour scaling is identical, the values have changed, because the method

for confidence level calculation has been improved. Also, the border effects are not
visible anymore.

Figure 7.22: Detail of PSD compliant LC pixel product for March 2006, Africa. Black pixels
indicate LC class 10, turquoise pixels indicate LC class 30, blue pixels indicate LC class
60, orange pixels indicate LC class 120, red colour indicates LC class 180. Occurrences

of the respective pixels have been marked by respectively coloured circles for easier
visibility.

7.4.4 FireCCILT10

For validation of the LTDR FireCCILT10 dataset, February 2000 has been (arbitrarily)

chosen. See below for sample images of the different layers of that product.

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 50

Figure 7.23: Burned Area, global, February 2000

Figure 7.24: Fraction of burnable area, February 2000

Figure 7.25: Fraction of observed area, February 2000

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 51

Annex 1: Acronyms and Abbreviations

AD Applicable Document

BA Burned Area

CCI Climate Change Initiative

CNFDB Canadian National Fire Database

DSWG Data Standards Working Group

ESA European Space Agency

FireCCI41 MERIS Fire_cci v4.1

FireCCI50 MODIS Fire_cci v5.0

FireCCI51 MODIS Fire_cci v5.1

FireCCILT10 AVHRR-LTDR Fire_cci v1.0

FireCCISFD11 Sentinel-2 SFD Fire_cci v1.1

FRAP Fire and Resource Assessment Program

LC Land Cover

MERIS Medium Resolution Imaging Spectrometer

MODIS Moderate Resolution Imaging Spectroradiometer

NAFI North Australian Fire Information

PSD Product Specification Document

SDR Surface Directional Reflectance

SR Surface Reflectance

SFD Small Fire Database

SSD System Specification Document

SVR System Verification Report

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 52

Annex 2: List of reference tiles and dates used for visual inspection of

FireCCI41 products

a) Visual inspection of MERIS BA outputs

Tile Year

v03h07 2007

v03h07 2008

v03h23 2008

v03h24 2008

v03h29 2008

v03h30 2008

v04h20 2008

v05h08 2008

v06h25 2008

v07h16 2008

v07h17 2008

v07h18 2008

v07h19 2008

v08h10 2008

v08h11 2008

v08h16 2008

v08h17 2008

v08h18 2008

v08h19 2008

v08h20 2008

v08h21 2008

v09h20 2008

v10h20 2008

v08h20 2011

Fire_cci
System Verification Report

Doc. Ref.: Fire_cci_D3.2_SVR_v2.4

Issue 2.4 Date 11/01/2019

Page 53

b) Visual inspection of FireCCI41 pixel product

File Year

Confirmed

compliant by

UAH’s developer

Zone 1 (North America) 2007 yes

Zone 1 (North America) 2008 yes

Zone 2 (South America) 2008 yes

Zone 3 (Europe) 2008 yes

Zone 4 (Asia) 2008 yes

Zone 5 (Africa) 2008 yes

Zone 5 (Africa) 2011 yes

c) Visual inspection of FireCCI41 grid product

File

Confirmed

compliant by

UAH’s developer

20080507-ESACCI-L4_FIRE-BA-MERIS-fv03.1.nc yes

20080607-ESACCI-L4_FIRE-BA-MERIS-fv03.1.nc yes

20080107-ESACCI-L4_FIRE-BA-MERIS-fv03.1.nc yes

	1 Introduction
	1.1 Purpose of the document
	1.2 Applicable Documents
	1.3 Reference Documents

	2 Systems under test
	2.1 FireCCI41
	2.2 FireCCISFD11
	2.3 FireCCI50/1
	2.4 FireCCILT10

	3 Verification approach
	3.1 Unit-level testing
	3.2 Code sanity checks
	3.3 Monitoring
	3.4 Visual inspection

	4 Data Acquisition Subsystem Verification
	4.1 FireCCI50/1
	4.2 FireCCILT10

	5 Pre-Processing Subsystem Verification
	5.1 Code sanity checks
	5.1.1 FireCCI41
	5.1.2 FireCCISFD11

	5.2 Unit-level tests
	5.2.1 FireCCI41
	5.2.2 FireCCISFD11

	5.3 Monitoring
	5.3.1 FireCCI41
	5.3.2 FireCCISFD11

	5.4 Visual inspection
	5.4.1 FireCCI41
	5.4.2 FireCCISFD11

	6 BA processing subsystem verification
	6.1 Code sanity checks
	6.2 Unit-level tests
	6.2.1 FireCCI41
	6.2.2 FireCCISFD11
	6.2.3 FireCCI50/1

	6.3 Monitoring
	6.3.1 FireCCI41
	6.3.2 FireCCISFD11
	6.3.3 FireCCI50/1
	6.3.4 FireCCILT10

	6.4 Visual inspection
	6.4.1 FireCCI41
	6.4.2 FireCCISFD11
	6.4.3 FireCCI50/1
	6.4.4 FireCCILT10

	7 Formatting subsystem verification
	7.1 Code sanity checks
	7.2 Unit-level tests
	7.2.1 Generic tests
	7.2.2 MERIS-specific tests
	7.2.3 SFD-specific tests
	7.2.4 MODIS-specific tests
	7.2.5 AVHRR-specific tests

	7.3 Calvalus monitoring
	7.3.1 FireCCI41
	7.3.2 FireCCISFD11
	7.3.3 FireCCI50/1
	7.3.4 FireCCILT10

	7.4 Visual inspection
	7.4.1 FireCCI41
	7.4.2 FireCCISFD11
	7.4.3 FireCCI50/1
	7.4.4 FireCCILT10

	Annex 1: Acronyms and Abbreviations
	Annex 2: List of reference tiles and dates used for visual inspection of FireCCI41 products

