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1 Executive Summary 

1.1 Purpose of the document 

The importance of fire in e.g. the emissions of greenhouse gases and aerosols, the carbon cycle and land 

cover changes, led to the need of high quality, long-term burned area estimates. On the other hand, the 

global warming as a result of increases of radiative gases (e.g. CO2, CH4) in the atmosphere caused by 

human activities (IPCC 2007) may have a profound impact on fire activity. In fact, the apparent global 

increase in the incidence, extent and severity of uncontrolled burning led to calls for international 

environmental policies concerning fire (FAO 2007). 

The use of remote sensing allowed a remarkable development of burned area mapping on regional and 

global scales, since instruments on-board satellites are currently the only available operational systems 

capable to collect cost-effective burned area information at adequate spatial and temporal resolutions 

(Chuvieco, 2008). 

The importance of fire on environmental studies and Earth resources management activities together 

with the availability of remote sensing data led to the growing number of multi-year, global burned area 

products, such as Global Burned Area (GBA) 2000 (Tansey et al. 2004), L3JRC (Tansey et al. 2008), 

GLOBSCAR (Simon 2004), the 1-km GLOBCARBON burned area product (Plummer et al. 2006), the 

AQL2004 project developed by RedLaTIF (Chuvieco et al. 2008a) and MCD45A1 product (Roy et al. 

2008). 

The Algorithm Theoretical Basis Document (ATBD), vol. II, describes in detail the burned area 

algorithms developed using the multi-sensor data archives from AATSR, VGT and MERIS FRS. These 

algorithms currently are adapted to the specifications of European sensors (A)ATSR, VEGETATION 

and MERIS, which are the core of  fire_cci. In this first project phase data are analysed for the periods 

1995-2009 time series for specific test sites (see Calado et al. 2011), along with global mosaics for 

specific years.  

This version of the document presents the final algorithms developed by the (A)ATSR / VGT and 

MERIS teams. Following the CCI Statement of Work [AD-1], this document evolved during the 

progress of the project. 

1.2 Applicable Documents 

[AD-1] ESA Climate Change Initiative (CCI) Phase 1, Scientific User Consultation and 

Detailed Specification, Statement of Work, EOP-SEP/SOW/0031-09/SP, v1.4, 

2009, https://www.esa-fire-cci.org/webfm_send/110  

1.3 Document Structure 

The fire_cci ATBD is structured as follows: 

Section 1 is the Executive Summary. 

Section 2 is the state of the art and focus on several aspects related to fires. 

Section 3 gives an overview of the existing global burned area products, including product 

comparison. 

Section 4 describes the (A)ATSR, VGT and MERIS algorithms for burned area detection. 

Section 5 contains the references. 

 

https://www.esa-fire-cci.org/webfm_send/110
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2 Introduction 

2.1 State of the Art 

Burned Area (BA) is the primary variable of the fire disturbance ECV and is part of the ESA Climate 

Change Initiative (CCI) programme. The programme aims at taking full advantage of the long-term 

global Earth Observation archives that ESA and its Member states have established over the last years, 

in the generation of ECV databases as stated by the Global Climate Observing System (GCOS, 2009). 

Accordingly, the fire_cci project shall focus on the generation of burned area (BA) products, that will 

be adapted to the climate modelling community, using (A)ATSR, VEGETATION and MERIS data. 

2.1.1 Remote sensing of fire signals 

Wildfire generates various types of remotely sensed signal as a result of the biomass combustion process. 

Some fire effects, such as heat and smoke last for relatively short periods of time. Others, like the char 

residue left on the surface, and especially the altered vegetation structure are more persistent (Robinson 

1991; Pereira et al., 1999b). Surface charring is a quite unique consequence of vegetation combustion, 

but has relatively short duration and tends to be strongly attenuated by wind and rainfall in a few weeks 

or months after the fire. Burned patches and vegetation removal by fire are more stable (although its 

persistence may vary from a few weeks in tropical grasslands, to decades in boreal forest ecosystems), 

but less significant to discriminate fire effects, since partial or complete removal of plant canopies also 

may be due to other factors such as harvesting, grazing, wind throw, water stress, or the action of insects 

and pathogens. 

2.1.2 Char 

The consumption of plant biomass by fire leaves charcoal on the ground is one of its most abundant 

residues. The magnitude and direction of spectral changes caused by the surface charring depends on 

the condition of the vegetation prior to burning. In ecosystems dominated by herbaceous vegetation (e.g. 

savannas, steppe, grasslands), there is a marked annual phenological cycle, and the aboveground plant 

parts typically are dead and dry at the time fires occur. The major spectral change is a sharp decrease in 

surface reflectance over the entire 0.4 - 3m region, i.e., from bright dry grass to charred soil surface. 

By contrast, in most forests and shrub lands, the aboveground vegetation is live and green during the 

fire season. In this case, the drop in NIR reflectance tends to be smaller than in savannas, steppes and 

grasslands. Spectral reflectance changes in the SWIR are more complex, because tall, dense vegetation 

is dark and replacing this kind of land cover by a charcoal layer may not darken the surface much further. 

When a bright soil background is exposed as a result of the fire-induced erosion, SWIR surface 

reflectance may display a small increase. Spectral signatures of charcoal, green vegetation and dry 

vegetation are shown in Figure 1. 

Pereira et al. (1999b) provided an overview of the spectral properties of burned areas in the spectral 

range from visible to microwave, and covering various biomes. They indicate that the visible spectral 

range is not very effective for discriminating burns and suggest various reasons: 1) Like recent burns, 

several common land cover types, namely water bodies, wetlands, dense conifer forests, and many soil 

types are quite dark in the visible. These similarities reduce the possibility of using the visible range to 

discriminate burns; 2) The dynamic range available with Earth observation satellites for discriminating 

between these different types of surfaces, all of which are dark in the visible, is narrow; 3) path radiance, 

an important component of the atmospheric effect, predominates in the visible range especially over 

dark surfaces, and causes a loss of contrast between different land cover types. 
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Figure 1: Typical spectral reflectance signatures of pure charcoal, green vegetation and dry vegetation 

 

The NIR is the spectral region where the signal of recent burned area (BA) is strongest and, therefore 

NIR is considered as the best spectral region for BA detection and mapping, especially when pre-fire 

fuel loadings are high and combustion produces large amounts of charcoal that are deposited on the 

ground. Since green vegetation is very reflective in the NIR, burning typically causes significant 

decreases in reflectance. The phenological status of the vegetation (i.e. green versus dry) prior to the fire 

appears to be of little relevance in the NIR, and therefore does not introduce a distinction between the 

burning of dry savannas on one side, and the burning of green forests and shrub lands, on the other side. 

Both green and dry vegetation have substantially higher reflectance than recent burns, and therefore 

darkening of the burned surfaces in the NIR is quite systematic. 

SWIR spectral changes induced by fire are similar to those in the visible range, since burned areas are 

typically more reflective than green vegetation, but darker than the predominantly senesced vegetation 

of tropical savannas during the dry season. Pereira (1999) found that the change in reflectance over 

burned surfaces is higher in the SWIR than in the visible, and thus considered the NIR - SWIR bispectral 

space more appropriate for burned area discrimination and mapping than the classical visible (VIS) - 

NIR space used in remote sensing of vegetation. The already mentioned higher smoke aerosol 

transmittance in the SWIR is an additional advantage of the NIR – SWIR bi-spectral space. 

Trigg and Flasse (2000) reached similar conclusions in a field spectroradiometry study of burns in 

southern African grassland. In particular, they found that 0.86µm and 1.24µm reflectance displays 

substantial reflectance decrease for at least 13 days after the burn; red, green and SWIR (1.65 µm) are 

mostly sensitive immediately after the burn; SWIR (2.1µm) becomes sensitive from one day after the 

burn; blue is insensitive to burning. Spectral differences between pre- and post-fire (signal) become 

statistically insignificant in the green, SWIR (1.6 µm) and red bands, respectively at seven, seven and 

eleven days after the fire. Fuel loading of the study area was very low (0.35 t.ha-1) and areas with higher 

fuel loadings are expected to produce more abundant combustion products and a more persistent burn 

signal. Trigg and Flasse (2001) compared various bi-spectral spaces defined with MODIS channels for 

the discrimination of burned areas from a range of land cover types in southern African savannas. They 

found that the best bi-spectral space was defined by the 1.65 µm and 2.1 µm channels. Bi-spectral spaces 

involving the visible range perform worse than those defined in the NIR-SWIR or SWIR-SWIR spaces. 

The AATSR and SPOT-VGT afford a limited choice of bi-spectral spaces, the best performing of which, 

according to this analysis ought to be that defined in the NIR-SWIR (e.g. 0.86 µm – 1.65 µm). However, 

Trigg and Flasse (2001) comment that it performs better for the discrimination of burns in green 

vegetation than in senescent vegetation. However, field spectroradiometric data from southern African 

grassland and woodland ecosystems reported by Pereira (2003) show a substantially larger fire-induced 

spectral change in the (senescent) grassland than in the woodland. SWIR behaviour illustrates previous 

statements of low sensitivity to burning in green vegetation. 
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Silva et al. (2004) specifically addressed the issue of fire-induced spectral reflectance changes as a 

function of pre-fire vegetation phenology (quantified with the NDVI), using SPOT-VGT data from 

study areas in boreal forests, tropical savannas, and temperate forests and shrub lands. NIR reflectance 

was found to decrease markedly after burning in all land cover types considered in the three different 

study areas. All burned areas in the grasslands and croplands showed NIR and SWIR reflectance 

decrease. In evergreen needle leaf forest, mixed forest, woodland and wooded grassland, spectral 

changes induced by fire displayed two distinct responses: a simultaneous decrease of SWIR and NIR 

reflectance; or a small increase in SWIR reflectance and a decrease in NIR reflectance. The expected 

post-fire decrease in SWIR reflectance, owing to strong absorption by charcoal (Pereira et al. 1999a, 

Fraser et al. 2000), occurs mostly in dry vegetation, such as grassland, which has high pre-fire SWIR 

reflectance. In contrast, green vegetation, which has low pre-fire SWIR reflectance due to high moisture 

content, displays smaller reflectance changes due to burning (Figure 2). In very green vegetation, 

burning may even cause a small increase in SWIR reflectance (Silva et al. 2004). 

 

Figure 2: Fire-induced spectral reflectance changes in a mid-infrared (ρETM5, 1.65μm) versus near-

infrared (ρETM4, 0.86μm) bi-spectral space. Data from a Landsat 7 Enhanced Thematic 

Mapper scene from the Western Province, Zambia, dated September 2000 (Pereira 2003). 

2.1.3 Scar 

Fire alters the vegetation structure by consuming leaves, twigs and fine branches. The resulting spectral 

changes last longer than those caused by the deposition of ash and charcoal. Persistence of the fire scar 

signal is a function of vegetation type, net primary productivity and plant succession dynamics, and may 

range from a few weeks in tropical grasslands to decades in boreal forests. Modifications of the three 

dimensional structure of vegetation affect its shading pattern, while consumption of photosynthetically 

active plant parts eliminates the greenness signal. The soil background exposed by vegetation removal 

will also contribute to the overall spectral signal of the fire-affected area. This is, however, dependent 

on severity. If a stand replacing fire occurs, then shadowing can be neglected. In a ground fire, only the 

surface vegetation layer at the bottom is affected, and thus the signal is weak and of 

ephemeral.Considering the specifications of the present project, which relies on daily, or near-daily data 

for the detection of burned areas, the post-fire signal is expected to be strongly dominated by the char 

signal. 

2.1.4 Heat 

Both the (A)ATSR / VGT and the MERIS algorithm incorporate active fire data, based on sensing the 

heat from vegetation burning, hence this brief overview of the thermal signal. Temperatures of 1000K 

and 600K can be assumed as representative of typical flaming and smouldering combustion phases of 

vegetation fires, respectively (Lobert and Warnatz 1993). According to Wien’s Displacement Law, the 
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peak emission of radiance for flames and smouldering surfaces would be located in the middle infrared 

(MIR), between 3m and 5m. For an ambient temperature of 290K (17C), the peak of radiance 

emission is located at approximately 10m. Active fire detection from remote sensing exploits this 

behaviour, and typically relies on some combination of brightness temperature measured in the 3m  - 

5m and 10m - 12m regions. The key “active fire signal” is, therefore, an increase of the observed 

radiance in the 3m - 5m region, relatively to surrounding areas. For increasingly smaller and/or cooler 

fires, this contrast is progressively attenuated and becomes difficult to discriminate from natural spatial 

variability of the land surface temperature field. Additional perturbation sources for active fire detection 

may be the presence of atmospheric water vapour, a strong reflection of solar radiation in the 3m - 

5m region, or the presence of sub-pixel clouds (Kaufman and Justice 1998).  

2.1.5 Smoke 

Smoke from vegetation burning often interferes with observation of the land surface, influencing the 

choice of the spectral domains of observation, and affecting burned area mapping timeliness and 

accuracy. Data pre-processing for this project incorporated screening of smoke-contaminated imagery, 

but residual contamination may be present in the data used by the BA classification algorithms, which 

is why the smoke signal is addressed here. Biomass burning in wildfires is not fully efficient, due to 

high fuel moisture, insufficient oxygenation of the reaction zone, inefficient heat transfer, etc. The more 

efficient phase of flaming combustion yields products such as char (partially oxidised wood) coexists 

with less efficient smouldering combustion, the phase that takes place behind the active flame front and 

yields substantial amounts of smoke. Since the objective is to detect and map fire effects at the land 

surface, smoke is seen as an atmospheric disturbance that interferes with this objective. Mie scattering 

is strongest when particle radius corresponds to the wavelength of radiation. Smoke aerosol particles 

range in size from 0.01 to 1.0μm, which makes them efficient scatterers of solar radiation (Jacob 1999). 

Biomass burning smoke is also an absorbing aerosol, because it contains high concentrations of black 

carbon (Dubovik et al. 2002; Kaufman et al. 2002). The perturbation caused by smoke aerosol to 

observation of the land surface from satellite can be quantified calculating the aerosol transmittance, τaλ 

(Iqbal 1983), which increases strongly with wavelength. Smoke aerosol transmittance is very low in the 

visible spectral domain, which becomes inadequate to monitor the land surface when biomass burning 

emissions are present in the atmosphere in significant amounts. Under such circumstances burned area 

mapping is better accomplished using near-infrared (NIR: 0.7-1.2 µm) and shortwave-infrared (SWIR, 

1.4-2.5 µm) spectral data (Kaufman et al. 1997; Pereira 1999, 2003). 
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3 Overview of pre-existing global burned area products 

Several methods based on remote sensing imagery for continental and global burned area mapping have 

been developed in the past few years (Barbosa et al. 1999, Roy et al. 2002, Govaerts et al. 2002, Tansey 

et al. 2004, Giglio et al. 2009), using a variety of change detection techniques. This is a complex 

problem, for a number of reasons, such as the dependence of the burned area spectral signature on the 

type and quantity of vegetation burned, variable burn severity and combustion completeness, the post 

fire rates of combustion product (charcoal and ash) scatter and vegetation recovery rate. First a brief 

overview of global burned area products based on the AVHRR and MODIS sensors is given, followed 

by a more detailed analysis of products derived from (A)ATSR and SPOT-VGT imagery (see sections  

3.3 and 3.4, respectively). Also studies to assess the capability of MERIS for BA detection are addressed 

(see section 3.5). 

3.1 AVHRR-based global burned area products 

Carmona-Moreno et al. (2005) used daily global observations from the NOAA/AVHRR between 1982 

and 1999 to create a weekly global burned area product at 8km spatial resolution. The algorithm for 

identifying burned surfaces uses data from AVHRR channels 1–3, extending the approach of Barbosa 

et al. (1999a, b). Comparison with independently available fire data indicate that the time-series is 

inadequate to make quantitative and accurate estimates of global burned area, it is suitable to assess 

changes in location and season of burning at the global scale. Fire seasonality and fire distribution data 

sets were integrated as 0.5º fire probability grid maps. 

Riaño et al. (2007) analysed spatial and temporal patterns of global burned area with the Daily Tile US 

NOAA/AVHRR Pathfinder 8 km Land dataset between 1981 and 2000. Burned area mapping relied on 

algorithms previously developed for Africa by Barbosa et al. (1999b) and Moreno-Ruiz et al. (1999), 

but using imagery which addressed the solar zenith angle errors affecting previous datasets. The studied 

focused on the identification of large scale fire seasonality patterns in the northern and southern 

hemispheres, and on the detection of regional trends in burned area extent. 

Even with the solar zenith angle correction, the Pathfinder 8km dataset still is affected by spurious 

temporal trends, which limit the temporal consistency of burned area products. Its low spatial resolution 

very likely leads to substantial underestimation of area burned in extensive areas of the planet. The 

global burned area products of Carmona-Moreno et al. (2005) and Riaño et al. (2007) both apply, at the 

global scale, an algorithm originally developed to map burns over Africa, which may also lead to higher 

inaccuracies over temperate and boreal regions. 

3.2 MODIS-based global burned area products 

Roy et al. (2002) inverted a bi-directional reflectance model against multi-temporal land surface 

reflectance data, obtaining expectation and uncertainty estimates of subsequent observations through 

time. Their algorithm deals with angular variations in multi-temporal data and use a statistical measure 

to detect change from a previously state. Large discrepancies between predicted and observed values 

are attributed to change. A temporal consistency threshold is used to differentiate between sporadic 

changes, considered as noise, and persistent changes interpreted as burns. The algorithm is adaptive to 

the number, viewing and illumination geometry of the observations, and to the level of data noise. Roy 

et al. (2008) presented first results of this algorithm for 12 consecutive months of the NASA Moderate 

Resolution Imaging Spectroradiometer (MODIS) global burned area product. Globally the total area 

burned detected by the MODIS product was 3.66×106 km2 for July 2001 to June 2002. Comparison with 

the MODIS global active fire product showed that the MODIS burned area product labels a greater 

proportion of the landscape as burned Globally, the burned area product reports a smaller amount of 

area burned than the active fire product in croplands and evergreen forest and deciduous needle leaf 

forest classes, comparable areas for mixed and deciduous broadleaf forest classes, and a greater amount 

of area burned for the non-forest classes. 
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Giglio et al. (2006) proposed a method for estimating monthly burned area globally at 1º spatial 

resolution, with MODIS Terra imagery and ancillary vegetation cover information. They constructed 

regression trees for 14 different global regions, calibrating MODIS active fire observations to burned 

area estimates from MODIS 500-m imagery, assuming proportionality between burned area and active 

fire counts. Regional regression trees were applied to the full archive of MODIS Terra fire data, yielding 

a monthly global burned area product ranging from late 2000 through mid-2005. Annual burned area 

estimates thus derived compare well with independent annual estimates for Canada, the United States, 

and Russia. Global annual burned area estimates for the years 2001–2004 varied between 2.97 million 

and 3.74 million km2, with the maximum in 2001. 

3.3 (A)ATSR-based global burned area products 

There is significant previous experience with the use of (A)ATSR data for burned area mapping at the 

global scale. A brief overview of methods, results and assessment of the two available global burned 

area products developed from these sensors is provided below. 

3.3.1 GlobScar 

The European Space Agency GlobScar Project produced global monthly burned area maps at 1km 

spatial resolution using day-time data of the Along Track Scanning Radiometer (ATSR-2) instrument 

onboard the ESA ERS-2 satellite from the year 2000. The image classification procedure combines two 

distinct algorithms: K1 is a contextual algorithm based on the geometrical characteristics of the burned 

pixels in the near-infrared (NIR, 0.87µm) / thermal infrared (TIR, 11 µm) space, while the E1 algorithm 

is a series of fixed thresholds applied to the data from four spectral channels. 

The products were validated against other field and remote sensing data (Simon, 2004). Commission 

errors were uncommon and affected mostly scattered pixels. The only large area of commission errors 

is due to older burned areas, in the mixed and evergreen needle leaf forests of Canada and, probably, 

also in similar ecosystems across Russia. Omission errors were common and very important in some 

regions, such as the United States (open shrubland and grassland areas), Australia (open shrubland), 

Zimbabwe (cropland), and Brazil (broadleaf evergreen forests). 

3.3.2 GlobCarbon 

The European Space Agency GlobCarbon project generated a global monthly 1-km burned-area product, 

using two regional GBA2000 algorithms and the GLOBSCAR algorithms applied to 1-km SPOT 

VEGETATION and ERS2–ATSR2/ENVISAT AATSR data, respectively. The two GBA2000 

algorithms are the IFI algorithm (Ershov and Novik 2001) developed for the Eurasian boreal forest and 

the Technical University of Lisbon (UTL) algorithm (Silva et al. 2002, 2003) developed for southern 

Africa. The GLOBSCAR algorithm, applied to ERS2–ATSR2 for 1998–2002 and to ENVISAT AATSR 

data for 2003–2007, is based on two separate algorithms. The K1 GLOBSCAR algorithm (Piccolini 

1998) and the E1 GLOBSCAR algorithm (Eva and Lambin 1998) A first validation of the 

GLOBCARBON products was performed using 72 Landsat images (Globcarbon, 2007), using linear 

regression analysis based on hexagonal grids of equal area. Results were very diverse in different 

ecosystems and algorithms.  For the global validation, results varied from mean correlations of 0.34 

(Globscar algorithm) to 0.85 (logical combination of two or more algorithms), with a high standard 

deviation. 
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3.4 The SPOT VGT-based global burned area products 

There is extensive experience with SPOT-VGT data for regional, continental, and global burned area 

mapping. Here we briefly review methods, results and assessment of the two available global burned 

area products developed using SPOT-VGT imagery. 

3.4.1 GBA2000 

The GBA2000 project relied on SPOT-VEGETATION data to estimate global burned area at 1 km 

spatial resolution, during the year 2000. Tansey et al. (2004) reported estimates of BA size and number 

for four broad vegetation classes and at country level. They mapped over 3.5 million km2 of burned 

areas, approximately 80% of which occurred in shrublands and woodlands. About 17% of the burned 

area affected grasslands and croplands, and 3% occurred in forests. Almost 600,000 individual BA were 

mapped. 

The GBA2000 project was based on an international network of partners for the development and testing 

of a series of regional algorithms and for the production of continental/regional burned area maps. 

Different methods were considered necessary to deal with specificities of the burned area remotely 

sensed signal throughout the major biomes of the World (e.g., boreal forest, tropical forest, grasslands). 

The various continental/regional maps were subsequently patched together, to form a global product. A 

total of 11 regional algorithms were developed from temporal and spatial subsets of VGT S1 data. In 

general, algorithms were applied on multitemporal composited data, using a change detection approach. 

Data classification approaches used included multiple logistic regression, Multi-Layer Perceptron 

(MLP) neural networks, expectation-based BRDF model inversion, classification and regression trees, 

and linear discriminant analysis. 

Although global validation of the GBA2000 product was not performed, Tansey et al. (2004) mention 

problems detecting sub-pixel burned areas (a significant problem in regions of tropical forest), mapping 

burns in cloudy regions, and the false detection of burned areas caused by flooding or dark soils. 

3.4.2 L3JRC 

The L3JRC project was developed under a partnership between the EC Joint Research Centre (JRC), 

the University of Leicester, the University of Louvain-la-Neuve, and the Tropical Research Institute, 

Lisbon. Global burned area maps, at 1km spatial resolution were developed for seven fire years (2000 

to 2007), using a modified version of a Global Burned Area (GBA) 2000 algorithm. The total area 

burned each year (2000–2007) was estimated to range from 3.5×106 km2 to 4.5×106 km2. Validation was 

based on 72 Landsat TM scenes, and correlation statistics between TM and VGT estimated burned areas 

were reported for major vegetation types. Accuracy of the global data set was found to depend 

substantially on vegetation type (Tansey et al. 2008). 

The main processing L3JRC algorithm uses a temporal index in the 0.83 m channel of VGT. This 

index, I, is computed as: 

I = (S1NIR – ICNIR) / (S1NIR + ICNIR) 

where S1NIR is the pixel value of the NIR band of the S1 daily product and ICNIR an intermediate 

composite product. The intermediate composite consists of averaged NIR reflectance derived from all 

observations prior to observation on the day being considered. No calculation or detection is performed 

where S1NIR or ICNIR equals zero. Mean and standard deviation values are computed for the index I over 

a spatially roving window. A pixel is flagged as burned if the pixel value in the roving window, I, is 

lower than the mean value minus two standard deviations. Two further checks are made on reflectance 

values in the 0.83 µm (S1 pixel value < 260) and 1.66 m (S1 pixel value > 250) channels to confirm 

the burned area (Tansey et al. 2008). 

A first validation of the L3JRC burned area product was based on 72 Landsat TM scenes. Estimated 

accuracy extremely varied from one land cover to the other, with values as low as 3% for mosaic of land 

covers and maximum values of 56% in herbaceous cover (both in terms of regression slope: Tansey et 

al. 2008). Accuracy also changed with latitude-ecosystem, with good performances for boreal forest and 
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much lower in semi-arid Australia and Africa. Under detection by L3JRC seems to be more significant 

in areas of shrubs and grasses rather than forests. As the original GBA2000 algorithm that was modified 

for L3JRC had been developed for detecting boreal forest burns, this might be expected. The L3JRC 

algorithm also underestimates burned area over cultivated and managed lands, possibly because their 

size is too small for detection by SPOT VEGETATION (Tansey et al. 2008). 

3.5 MERIS-based burned area studies 

MERIS was primarily designed to provide quantitative ocean-colour measurements (Rast et al. 1999). 

However, its spectral characteristics make it appropriate to also serve applications like land surface and 

atmospheric characterisation (see (Calado et al. 2011). It is well known that one of the major drawbacks 

of MERIS images, for BA identification, is the lack of SWIR bands, which has proven to be crucial to 

discriminate burned surfaces from water and non-combustible land cover. On the other hand, its multi-

spectral imaging capabilities in the VIS/NIR region of the spectrum, moderate spatial resolution and 3 

day repeat cycle, may in part circumvent this limitation. In fact, MERIS bands are so narrow that it is 

possible to detect absorption bands and estimate its depth. Moreover, the sensor was especially designed 

to detect chlorophyll concentration having though bands in the red edge (bands located in the maximum 

of chlorophyll absorption). Such bands allow the use of indices of chlorophyll concentration, that may 

be of use for BA detection, since an abrupt decrease in the chlorophyll content may be related to a fire. 

Regarding fire applications, very few studies have been conducted using MERIS instrument. Among 

the existing studies, there is one developed by Huang and Siegert (2004), where Level 1b MERIS RR 

product was used to identify plumes and the BA detection was achieved combining night-time AATSR 

fire hot spots with BA detected with Advanced Synthetic Aperture Radar (ASAR). Another study 

concerning the estimation of fire severity using MERIS FR Level 2 imagery and MODIS daily 

reflectivity product (MOD09GHK) was conducted by Roldán-Zamarrón et al. (2006). The BA mapping 

was performed applying the matched filtering method (Boardman et al. 1995) to Landsat TM data and 

the fire severity levels were then estimated through use of different techniques to MERIS and MODIS 

images. The authors concluded that, in general, the fire severity estimation performed by MERIS was 

more accurate than the one performed by MODIS. Gonzaléz-Alonso et al. (2007) also applied the same 

technique to MERIS FR Level 1b imagery to estimate fire severity levels and BA at a local scale. 

Validation was then performed comparing obtained results with the ones obtained using SPOT-5, 

showing a fairly high correlation between both sensors. Aiming to evaluate the ability of some sensors 

on the estimation of fire severity levels, Chuvieco et al. (2007) performed a comparative study using 

SPOT-5, Landsat TM, MERIS and MODIS and concluded that Landsat TM was the one presenting the 

best performance. Nevertheless, MERIS proved to be capable of correctly identify the spatial pattern of 

the distribution of the severity levels. 

It is worth noting that the above studies are not specifically oriented to burn area mapping, but rather to 

the analysis of some aspects related to level of damage caused by fires. 

Only two works have been found in literature in relation to burned area mapping. The first one used 

Spectral Angle Images (SAI) technique at a regional scale (Oliva and Martín 2007; Oliva et al. 2010). 

The SAI methodology makes use of a reference spectrum (endmembers) that in present case was 

obtained from the image (SAI-image) and from the field spectral measurements (SAI-field). The study 

used MERIS FR Level 2 images and compared BA discrimination using traditional vegetation indices 

(e.g., BAI, GEMI, , NDVI) with SAI technique and validation was carried out using AWiFS images. 

Obtained results showed that index  (a component of the GEMI calculation) and the SAI-image were 

the ones that presented higher accuracy. According to the authors, NIR bands in the red edge (bands 9 

to 12) region present a higher power of burned area discrimination than NIR bands (bands 13 to 15) in 

the spectral region traditionally used by the sensors designed for Earth observation (Oliva 2009). From 

these ones, when using only one post-fire image, band 10 (in the spectral range 750 nm – 757.5 nm) is 

the one with the highest discrimination power, even though all NIR bands (from band 10 to band 14) 

present similar discrimination power. On the other hand, when using spectral indices for purposes of 

burned pixels detection, band 10 in the red edge and band 8 in the red region, were the ones with highest 

discrimination power. The second study was conducted by González-Alonso et al. (2009). It used 

MERIS FR Level 1b data for burned land discrimination at a regional scale. The method used in a 
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synergetic way fire hotspots from MODIS with NIR reflectance values from MODIS and MERIS 

imagery. Basically, the algorithm consisted in finding the threshold that maximizes the agreement 

between the burned area discriminated using the NIR band of a post-fire image and the existence of an 

active fire as detected by MODIS. Again validation was performed using an image from AWiFS and 

obtained results were very similar when using MODIS and MERIS reflectance values, although slightly 

better in the case of MERIS. It is worth mentioning that these studies have only been applied to the 

North-western part of the Iberian Peninsula to the summer of 2006 and to the Province of Heilongiang 

in the North of China, in the framework of the ESA DRAGON-2 project (González-Alonso et al. 2009).  

While studies performed at regional scale show the potential of this sensor to detect burned areas, 

especially when using hybrid algorithms, to date MERIS has not been used to obtain a global burned 

area product. 

3.6 Conclusions 

Both (A)ATSR-based burned area products result from the global application of pre-existing regional 

algorithms. Classification accuracy was very variable regionally, and relatively low at the global scale. 

The VGT-based GBA2000 product was developed combining a large number of regional algorithms, 

with undesirable effects on global consistency. No global accuracy assessment was performed for this 

product. The L3JRC product, also derived from VGT data, relied on a modified version of a GBA2000 

algorithm developed for the Eurasian boreal region, applied at global scale. Burned area classification 

accuracy was also found to vary substantially with land cover type and was low globally. 

There is no previous experience with the use of MERIS data for global burned area mapping, and even 

regional scale research is very scarce. 

Burned area products developed under the scope of the present project are meant to overcome the main 

methodological limitations of previous work. They rely on new algorithms, designed with data from ten 

regional study sites covering all major Earth biomes with moderate to high fire incidence. The VGT and 

(A)ATSR products were developed from a single algorithm applied at global scale, with minor 

modifications to accommodate specifically distinct features of each sensor. The MERIS-based product 

also results from the application of a single, global scope algorithm. Although newly designed, VGT, 

(A)ATSR, and MERIS algorithms incorporate previously developed data, techniques, and concepts for 

burned area mapping. 
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4 (A)ATSR, SPOT Vegetation and MERIS algorithms 

4.1 Introduction 

The perceived main methodological limitations  behind the available (A)ATSR-based and VGT-based 

products are the global application of regional algorithms, the creation of global products “mosaicked” 

from a multiplicity of regional algorithms, and the simplistic nature of some algorithms used, all of these 

contributing towards relatively low classification accuracy. Our goal is to develop a single algorithm, 

robust enough for global application with both sensors, with minor modifications. For MERIS, given 

the lack of global-scale burned area algorithms/products based on data from this sensor, no similar 

analysis can be performed, and the algorithm evolves from previous experience at regional scale. 

The VGT / (A)ATSR algorithm relies on a single-channel time series change detection approach, 

complemented with fire seasonality weighting, and spatial-temporal contextual revision of single pixel 

burned area classification. The time series change detection component of the algorithm has similarities 

with the algorithms of Govaerts et al. (2002) and Roy et al. (2002). The MERIS algorithm follows a 

hybrid approach to obtain burned areas on a global scale. It uses temporal composites of individual 

channels and spectral indices, combined with active fires and a region growing procedure, to detect and 

map burned areas. The algorithm incorporates concepts from previous hybrid approaches combining the 

reflective and the thermal signal associated with vegetation burning (Fraser et al. 2000; Giglio et al. 

2009; Roy et al. 1999),  especially those based on MERIS imagery (González-Alonso and Merino de 

Miguel 2009; González-Alonso et al. 2010). 

4.2 (A)ATSR and SPOT Vegetation detailed algorithm descriptions 

The algorithm for mapping burned areas using SPOT-VEGETATION and (A)ATSR imagery relies on 

spectral, temporal, and spatial data. More precisely, it looks for spatial and temporal patterns in spectral 

data that indicate vegetation burning. We analyse single channel (near infrared, NIR) time series of 

surface reflectance data, which were previously screened for clouds, smoke and haze. Permanent and 

temporary water bodies were also masked out of the dataset (Bachmann et al. 2014). 

The algorithm is designed to answer a series of questions: 

a) Was there a spectral change, at a given date? (change point detection) 

b) Does it look like burning and does it happen at a plausible date? (selecting and scoring change 

points) 

c) Is there evidence of burning in that neighbourhood, that day and during previous days? 

(Markov Random Field segmentation) 

The first three questions are addressed analysing time series of data at the level of a single pixel, while 

answering the last question requires taking into account the information contained in areas defined by a 

variable number of pixels. Question a), estimating the point in time at which the statistical properties of 

a series of NIR surface reflectance data have changed, is addressed with a Change Point Detection (CPD) 

technique. Once potentially multiple change points have been identified, question b) is answered by 

scoring each change point based on its date of occurrence, and spectral characteristics related to the NIR 

reflectance change associated with it, both in time and in space. Finally, c) revises the initial (a-b) burned 

area detection and mapping, in the light of evidence of burning in the spatial neighbourhood of a given 

pixel, during the day it was detected and also during a short preceding period, yielding the final burned 

area map. Figure 3 illustrates the algorithm. 
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 Figure 3: SPOT-VGT / (A)ATSR burned area classification and mapping algorithm 
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4.2.1  Change detection algorithm 

4.2.1.1 Time series pre-processing  

The pre-processed surface reflectance time series display an oscillating pattern caused by variations in 

illumination and observation geometry, the bidirectional reflectance distribution function (BRDF) 

effect, which increases the variability of the data, independently from any actual changes occurring at 

the land surface. Additionally, the time series also reveal residual atmospheric effects, which generate 

positive outliers (“spikes”) in the data, again unrelated to land surface changes. The signal we are trying 

to detect, vegetation burning, appears as a decrease in values of the NIR surface reflectance time series. 

Although this decrease often is evident in both the maximum and the minimum of each BRDF-induced 

oscillation, it tends to be more consistently and reliably expressed in the minima values, which are least 

affected by residual atmospheric contamination. Therefore, we extract a time series of minima from the 

original NIR surface reflectance data. These time series also contain negative outliers, usually caused 

by cloud shadowing, and occasionally due to unscreened flooding, corresponding to pixels that were not 

captured by the screening procedures described in Bachmann et al. (2014). Robust filtering of the time 

series of surface reflectance minima is therefore applied to remove most of these negative outliers, 

yielding time series suitable for CPD. The time series pre-processing step of the algorithm was used 

only with the SPOT-VGT data. The (A)ATSR lower frequency of observation yields time series without 

enough data for the pre-processing step to work properly. However, (A)ATSR data are substantially less 

affected by BRDF effects, and thus are appropriate for immediate application of changepoint detection. 

4.2.1.1.1 Extraction of local minima 

Extracting local minima from a time series of observations y1:n = (y1, . . . , yn) of reflectance data entails 

a series of steps: 

1. Identification of “turning points”. An observation yi is a turning point, i.e. a local 

minimum,  ytm, (local maximum, ytM), if its two neighbours are both smaller (larger) 

(Kugiumtzis and Tsimpiris, 2010).  

2. Remove from the series all yi that are not turning points. 

3.  Calculate a time series of first-order differences and remove all turning points that differ 

from one of its immediate neighbours less than 0.02 reflectance units, i.e. points 

associated with minor, spurious oscillations in the series. Parameter min_diff_cutoff , min. 

4. Remove all remaining local maxima, ytM. After this step, then remaining points are shown 

in red in Figure 4. 

5. Remove those ytm ≥ 0.4 reflectance units, which are considered contaminated by residual 

atmospheric effects. Parameter max_refl_cutoff, max. 

The values for the min_diff_cutoff and max_refl_cutoff parameters were estimated empirically, from 

the quantitative analysis of a large number of single pixel time series, from the ten study sites available 

for algorithm development. 
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Figure 4: Original SPOT-VEGETATION time series (grey) for a single pixel over one full year. Turning 

points are shown in green (maxima) and red (minima). Dashed arrows show examples of non-

turning points and solid arrows show spurious oscillations, which generate positive outliers in 

the time series of minima. 

The resulting series of local minima (Figure 4) may contain outliers (“spikes”), which may be positive 

when generated by spurious oscillations that exceed min, or negative, mainly due to cloud shadow. 

 

4.2.1.1.2 Robust filtering 

Several of the time series of NIR reflectance for the study sitesof NIR reflectance minima show outliers 

(Figure 5), most of which correspond to a single date, although patches of two or three consecutive 

outliers may occur. These mostly negative “spikes”, although spectrally similar to burns, display much 

shorter persistence. The time series display periods of relative stability, slow monotonic trends, sudden 

level shifts and environmental and measurement artefacts. Such data require a method that performs fast 

and reliable noise removal, distinguishing extraneous effects from spectrally relevant changes at the 

land surface. The filtering approach of Fried (2004) uses robust regression for local approximation of 

the trend in a moving time window and replaces outliers based on robust scale estimators. Gather and 

Fried (2004) provide rules for automatic choice of window width, using the regression residuals. 

Implementation of this robust filtering approach in the “R”software suite (Fried et al. 2011, http://cran.r-

project.org/web/packages/robfilter/robfilter.pdf) requires the specification of a series of parameters for 

model fitting, local variability (scale) estimation, and outlier detection and handling: 

- Robust Trend Approximation (trend) refers to the method used to approximate the signal 

within one time window. Set to repeated median regression (RM).  

- Initial window width (width) is a positive integer defining the initial window width used 

for robust regression fitting. Set to a width of 3. 

- Scale estimate (scale) is the method used for robust estimation of the local variability 

(within one time window). Set to Rousseeuw’s and Croux’ (1993) Qn scale estimator 

(QN) 

- Outlier Detection (outlier) specifies the rule to be used for outlier detection and outlier 

treatment. Observations deviating more than 
^

. td   from the current level approximation 

^

t  are replaced by  
^^

tt     where 
^

t denotes the current scale estimate. Set to 

http://cran.r-project.org/web/packages/robfilter/robfilter.pdf
http://cran.r-project.org/web/packages/robfilter/robfilter.pdf
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winsorization (W) approach, which limits extreme values in the data to reduce the effect of 

possibly spurious outliers, by shrinking large and moderately sized outliers (d = 2) 

towards the current level estimate (k = 2). 

- Shift detection (shiftd) is the factor by which the current scale estimate is multiplied for 

shift detection. Set to 2.  

- Maximal window width (max.width) a positive integer (>= width) specifying the maximal 

width of the time window. Set to 7. 

- Window width adaptation (adapt) is the moving window width adaptation parameter. 

adapt can be either 0 or a value  [0.6; 1] . adapt = 0 means that a fixed window width is 

used. Otherwise, max.width is reduced whenever more than a fraction  [0.6; 1] of the 

residuals in a certain part of the current time window are all positive or all negative. Set to 

0.8. 

- Extrapolate defines the rule for data extrapolation to the edges of the time series. As 

implemented, it consists of the fitted values within the first half of the first window and 

within the last half of the last window. 

  

Figure 5: SPOT-VEGETATION time series (grey) for a single pixel over one full year. Turning points are 

shown in green (maxima) and red (minima). Blue line shows time series of minima without high 

values produced by spurious oscillations. Black line shows time series of minima with spikes 

removed by robust filtering. 

4.2.1.2 Changepoint Detection 

We adopt the approach of detecting changepoints in a time series through minimizing a cost function 

over possible numbers and locations of changepoints. The approach relies on a new method for finding 

the minimum of such cost functions, and hence the optimal number and location of changepoints, which 

has a computational cost that is linear in the number of observations (Killick et al., 2012). Changepoint 

detection within a time series consists of two steps: i) choice of statistical criteria to optimise and ii) 

optimisation algorithm. PELT is an algorithm for the optimisation step that can implement many choices 

of criteria including likelihoods. Common algorithms for the optimisation step include Dynamic 

Programming (Auger and Lawrence, 1989) and Hidden Markov Models (Chib,1998) which produce 

exact optimisations but are computationally slow, O(n2); and Binary Segmentation (Scott and Knott, 

1974) and Genetic algorithms (Jong et al., 2004) which are computationally fast, O(n log n) but produce 

approximate optimisations. In contrast PELT, which is an algorithm for the optimisation step that can 

implement many choices of criteria including likelihoods (Killick et al. 2012), was chosen because it is 

computationally fast (O(n)) and produces an exact optimisation.  
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4.2.1.2.1 Pruned Exact Linear Time (PELT) algorithm 

The Pruned Exact Linear Time (PELT) algorithm proposed by Killick et al. (2012) produces exact 

optimisation of changepoint segmentations in linear computational time. This is achieved using dynamic 

programming (computational time to O(n2)) and pruning to further reduce the computational time to 

O(n). For a given point n in a sequence, determining the optimal segmentation of the data prior to n with 

an unknown number of segments requires consideration of 2n-1 solutions. Dynamic programming 

techniques can be implemented to reduce the problem to simply consider the last change prior to n. 

Thus, at a given point n, the solution is simply which of the n-1 previous locations is the last changepoint 

prior to n. The number of options scales linearly with n and thus the computational time is O(n2). The 

PELT algorithm extends this idea further. The intuition behind the algorithm is that once an `obvious' 

change is encountered, say at n - 5, then data points before this, e.g. n–6, n–7,…, will never be the last 

change prior to n. Killick et al. (2012) quantify `obvious' with a bound which ensures that the algorithm 

remains an exact optimisation. Furthermore, when a likelihood is used as the criterion to optimise, 

Killick et al. (2012) prove that, under regularity conditions, the computational cost of PELT is O(n). A 

mathematical description of PELT is given in Table 1 and the method is available in the “R” 

programming language (Crawley, 2007) package changepoint (Killick and Eckley, 2010). 

 

Table 1: PELT algorithm for identifying multiple changepoints. 

Input: A time series of the form (y1, y2 ,…, yn) where yi R. 

A measure of fit C(.) dependent on the data. 

A penalty  independent of the number and locations of changepoints 

Initialise: Let n = length of time series 

Set F(0) = -, cp(0) = 0, p=0. 

Iterate: For * = 1, …, n 

1. Calculate      )()(min)( ** :)11,,0(
* yCFF p

. 

2. Let  





)()(arg{min ** :)1(0

1 yCF  

3. Set  11* ),()(  cpcp  . 

4. Set })()()({arg *
:)1( *     FKyCFp r

. 

Output: The changepoints recorded in cp(n). 

 

4.2.1.2.2 Detecting changes in mean 

The PELT algorithm can be implemented with many optimisation criteria. In this work we seek to 

identify changes in mean within NIR reflectance data (Figure 6). We assume that the NIR reflectance 

follows a Normal distribution with a constant variance and changing mean. Following Hinkley (1970), 

the optimisation criteria (C(.) above) based on the likelihood is 
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Within PELT, we used  the Schwarz Information Criterion (SIC; Schwarz, 1978) as the penalty function 

to penalise against identifying too many changepoints, because the larger penalty term in SIC,  compared 

to the more commonly used Akaïke Information Criterion (AIC), performed better in terms of avoiding 

an excessive number of change points being detected. This method is implemented using the 

multiple.mean.norm function in the “R” software environment (Killick and Eckley, 2010). The time 

series data are not strictly normal, but the method is robust to moderate violations of this assumption. 

 

 

Figure 6: Changepoints (vertical purple bars) detected on the time series of filtered minima (black line), 

using the PELT algorithm, with SIC penalty function 

 

4.2.1.3 Changepoint selection and scoring 

The PELT/SIC approach to CPD may yield several changepoints per pixel / time series, and per season, 

since the mean value of NIR reflectance data varies not only in response to burning, but also as a function 

of cyclic weather patterns, atmospheric conditions, vegetation phenology and anthropogenic land cover 

changes. Therefore, it is necessary to select the changepoint most likely to correspond to the 

identification of a burning event in each pixel / time series. In order to be considered as candidates for 

scoring, changepoints need to satisfy all of the following criteria: 

a) The CP must be associated with a decrease in NIR reflectance( 𝑆𝑖+1
̅̅ ̅̅ ̅ − 𝑆𝑖̅:<0).  

b) The NIR reflectance decrease must not exceed 0.2 reflectance units (𝑆𝑖+1
̅̅ ̅̅ ̅ − 𝑆𝑖̅:<0.2).. Larger 

decreases typically are associated with cloud contaminated data in the segment preceding the 

CP. 

c) The post CP NIR reflectance must be smaller than 0.2 reflectance units (𝑆𝑖+1
̅̅ ̅̅ ̅ <0.2). Higher 

reflectance values typically are not associated with fire-affected surfaces. 

d) The CP requires a temporal density of 0.1 in the pre-CP segment, i.e. at least one valid 

observation per each 10 days of time series segment duration 

e) The CP requires a temporal density of 0.1 in the post-CP segment 

f) It requires that the reflectance value of a CP is smaller than the sum of lowest reflectance 

value in the post-CP segment plus 0.005 reflectance units. 

g) The slope of a linear fit to the NIR reflectance time series data in a post-CP segment cannot 

exceed 0.4. Higher rates of post-CP NIR reflectance recovery are inconsistent with post-fire 

vegetation recovery. 
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h) The dates of the CP with the two lowest NIR reflectance values in the time series cannot be 

separated in time by a period longer than half of the duration of the time series. Included to 

prevent selecting CP associated with the decreasing phase of NIR reflectance in time series 

with strong vegetation seasonality. 

i) The CP requires a minimum of three valid time series observations before (after) the first 

(last) CP in the time series for the NIR reflectance change measurement to be considered 

reliable. 

Next, the changepoints fulfilling these criteria are scored against a set of ideal points, representing the 

most paradigmatic regional examples of burned areas,in terms of NIR reflectance change, post-fire 

NIR,and timing of the fire. Compromise programming is the technique chosen to perform temporal 

changepoint selection and spatial changepoint scoring. 

 

4.2.1.3.1 Compromise programming 

Compromise programming (CP), is a multi-criteria decision analysis (MCDA) technique appropriate for 

use in a continuous multiple objective context (Zeleny, 1973), modified for the analysis of discrete 

problems by Duckstein and Opricovic (1980). This method identifies the alternatives which are closest 

to an ideal point, as determined by some measure of distance. Compromise programming is used at two 

stages in the (A)ATSR / VGT burned area mapping algorithm: first, to select the changepoint from each 

time series/pixel most likely to correspond to a burning event; second, to score each pixel in the selected 

changepoint annual map for each tile (or study site) in terms of its likelihood of representing a burning 

event. The latter scores are input for the Markov Random Field spatial/temporal BA classification 

revision procedure, the last step in the algorithm. 

The set of initial feasible alternatives to be evaluated (e.g. the set of all changepoints in a single-pixel 

time series) is (Zeleny, 1982, pp. 154-155): 

 

𝑋 = {𝑥1, 𝑥2, ... , 𝑥𝑚}    (1) 

 

and each changepoint is characterized by n attributes, or criteria. The kth changepoint can be written as: 

 

𝑥𝑘 = (𝑥1
𝑘,  𝑥2

𝑘 , … ,  𝑥𝑛
𝑘)   k = 1, 1,  m  (2) 

 

Individual 𝑥𝑖
𝑘 designate  the level of attribute i attained by changepoint k, where i = 1, ... , n;    k = 1, 

..., m. Therefore, 𝑥𝑘  is a vector of K numbers, assigned to each changepoint and synthesizing all 

available information about it and defining a multiple criteria alternative (Zeleny 1982, p. 155). If we 

now consider the ith individual evaluation criterion, the set X produces a vector with K numbers: 

 

𝑥𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝐾)     (3) 

 

This vector represents all currently attained levels of the ith attribute, for example, the NIR spectral 

reflectance changes (𝑆𝑖+1
̅̅ ̅̅ ̅ − 𝑆𝑖̅) associated with each changepoint. From among these values or levels, 

there is at least one ideal value that is preferred to all others, and the concept generalizes to the multiple 

criteria alternative as the set of all individual ideal levels, or ideal point, denoted as:  

 

𝑥∗ = (𝑥1
∗,  𝑥2

∗, … ,  𝑥𝑛
∗ )     (4) 
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The vector x* represents the ideal point, a usually unavailable alternative, characterized by displaying 

the best attainable score on every criterion. Using compromise programming, all available changepoints 

are rated based on their multidimensional distance to the ideal point, according to a chosen distance 

metric. A generalized family of distance metrics (Minkowski), dependent on the exponent p, can be 

expressed as (Zeleny, 1982, p. 317): 

 

𝐿𝑝 (, 𝑘) = [∑ 𝑖
𝑝𝑛

𝑖=1 (1 − 𝑑𝑖
𝑘)

𝑝
]

1

𝑝     (5) 

 

where  = (1,  … ,𝑛) is a vector of attribute weights, 𝑖 (𝑖 > 0  and ∑𝑖 = 1) and p is the distance 

parameter (1 ≤ 𝑝 ≤ ∞). Varying p affects the relative contribution of individual deviations from the 

ideal point, a greater emphasis being given to larger deviations as p tends towards . A value of p = 2, 

corresponding to an Euclidian distance metric, was chosen for implementation in the (A)ATSR/VGT 

burned area mapping algorithm. 

 The abovementioned data normalization to a [0, 1] range was accomplished using the eqs. 6 and 

7, where 𝑥𝑖
∗ and  𝑥𝑖∗  are anchor values, respectively the most desirable and the least desirable observed 

score for criterion i: 

 

𝑑𝑖
𝑘 =

𝑥𝑖
𝑘−𝑥𝑖∗

𝑥𝑖
∗−𝑥𝑖∗

      (6) 

 

when the most preferred score is a maximum (e.g. 𝑆𝑖+1
̅̅ ̅̅ ̅ − 𝑆𝑖̅, mean NIR spectral reflectance change 

associated with a given changepoint), and  

 

𝑑𝑖
𝑘 =

𝑥𝑖
∗−𝑥𝑖

𝑘

𝑥𝑖
∗−𝑥𝑖∗

       (7) 

 

when the most preferred score is a minimum (e.g. 𝑆𝑖+1
̅̅ ̅̅ ̅ , mean NIR post changepoint spectral reflectance 

change associated with a given changepoint). 

 

4.2.1.3.2 Selection of changepoints in single-pixel time series 

Application of CP at the level of each single-pixel, annual time series is performed with the goal of 

identifying the changepoint in the time series most likely to coincide with spectral changes induced by 

a burning event. Changepoints associated with an increase in reflectance and those preceded or 

succeeded by time segments with low density of observations (< 10% valid days in the segment), are 

discarded prior to evaluation. Changepoint scoring relies on three attributes, or criteria, i: 

- Change between the mean reflectances of the segments succeeding and preceding each 

changepoint detected in the time series, 𝑆𝑖+1
̅̅ ̅̅ ̅ − 𝑆𝑖̅ 

- Mean reflectance of the segment succeeding each changepoint, 𝑆𝑖+1
̅̅ ̅̅ ̅ 

- Value of the normalised [0,1], spatially smoothed, von Mises probability density function 

of the 10-day active fire counts in each 0.01º grid cell, defining a fire seasonality score, 

FvM.  
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The ideal point for the set of changepoints detected in each single-pixel time series is composed of the 

largest NIR reflectance change, the lowest succeeding mean reflectance value, and the largest fire 

seasonality score. It is possible that no changepoint detected in an annual time series corresponds to an 

actual burning event. Nevertheless, the changepoint closest to the ideal point, under a Euclidean (p=2) 

distance metric will be chosen as the best candidate for inclusion in the annual map.  

 

 

Figure 7 shows VGT NIR reflectance time series of a pixel in the Australia study site (2005), showing 

four changepoints detected with PELT. The changepoint more likely to represent a burning event is 

marked with the red vertical line. This point displays neither the largest 𝑆𝑖+1
̅̅ ̅̅ ̅ − 𝑆𝑖̅, nor the smallest  

 𝑆𝑖+1
̅̅ ̅̅ ̅. However, it is the closest to the ideal point in the 3-criteria evaluation space. 

 

4.2.1.3.3 Fire seasonality score 

The fire seasonality score is the most complex of the four criteria used in time series changepoint 

selection. The following describes the rational for its use and how it is derived. 

Global vegetation fire displays temporal patterns that are determined by a combination of climatic and 

anthropogenic factors (Giglio et al. 2006; Le Page et al. 2008, 2010) and typically occur during the local 

dry season, which varies greatly in duration and timing. The fire season was defined on a 1º grid cell 

and 10-day composites, using MODIS global monthly active fire location product (MCD14ML, 

collection 5) for the period 2001 - 2009. The data were previously screened using the approach of Mota 

et al. (2006) and Oom and Pereira (2013). The total number of active fires detected in each grid cell and 

time composite over the study period was plotted as a circular histogram and fitted with a mixture of N 

von Mises probability distributions (Fisher, 1995), the analogue of the normal distribution, for circular 

data. The number of von Mises distributions used varied from 1 to 2 corresponding, to uni- and bimodal 

distributions, respectively. For each component (j) the probability density function is defined by Eq. 5:  

 

 𝑣𝑀𝑗(𝜃; κ𝑗; 𝜇𝑗) =  
1

2𝜋𝐼0(κ𝑗)
exp [κ𝑗 cos(𝜃 − 𝜇𝑗)]  ,       0 ≤  𝜃 < 2𝜋     (5) 

Figure 7: VGT NIR reflectance time series of a pixel in the Australia study site (2005) showing four 

changepoints detected with PELT 
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where, κj  ≥ 0 and 0 ≤ µj < 2π are the concentration and mean parameters, respectively. The probability 

model of the mixture of von Mises distributions mvM(Ѳ) is given by Eq. 6: 

 

𝑚𝑣𝑀(𝜃) =  ∑ 𝜔𝑗𝑣𝑀𝑗
𝑁
𝑗=1 (𝜃)       (6) 

 

where, 0.05 ≤ ωj ≤ 0.95 is the mixture proportion of each component and ∑ 𝜔𝑗 = 1𝑁
𝑗=1  (Mardia and Jupp, 

2000; Jones, 2006). 

The mixture model was optimised by estimating its parameters to obtain the best fit between observed 

and predicted active fire cumulative frequency (e.g. Carta et al. 2007). In each grid cell, fire counts in 

each temporal composite were normalised by dividing them into the maximum number of fire counts 

recorded as a single composite, for scaling between 0 and 1. The single independent variable was the 

day of the year (recoded in radians). Non-linear curve fitting was performed with the automatic Newton 

search method, aiming at minimizing the square of absolute differences between observations and 

estimates (Coleman and Li, 1994). The only constraint applied to the parameter search space was κj  ≥ 

0.5, to avoid fitting uniform distributions (Fisher, 1993) to data without significant fire seasonality.  

Model performance was evaluated with the model efficiency index (hereafter, MEF), a measure of 

model predictive power (Nash and Sutcliffe, 1970). The index was calculated considering the observed 

and estimated normalised, non-cumulative, fire frequency. For each pixel, the circular mixture model 

with the highest MEF was selected, regardless of the number of parameters involved, guaranteeing the 

best possible fit. Cells with MEF < 0.7 were considered poor fits to the data, and no fire season start and 

end were estimated for these cells. Fire seasonality scores only were determined for cells containing a 

total of least 270 fire counts over the nine years of data, and with fire observations in at least 2 years. 

Figure 8 shows the distribution of the best MEF obtained at global scale. About 80% and 70% of the 

pixels have MEF higher than 0.6 and 0.75, respectively, showing the good overall model fit. 

 

 Figure 8: Global MEF distribution of the best fit von Mises (uni- or bimodal) distribution 

 

Figure 9 - Figure 11 show the circular distribution of observed and estimated frequencies for 0.5º cells 

located in Angola, Kazakhstan, and Indonesia. The seasonal distribution of fire activity was, unimodal 

and bimodal in Figure 9 and Figure 10. Figure 11 shows data for a cell where the distribution is 

multimodal, model fit is poor, and no seasonality filter is applied, i.e. the full year is processed. 
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Figure 9: Unimodal von Mises distribution fit to fire frequency data from Angola 0.5⁰ grid cell. Fire 

season is considered to start in mid-May and end in early October. Bars represent fire counts in 

10-day composites, the green cloud is the fitted von Mises distribution, and the green dot on 

circumference is the central date of the fire season. 

 

Figure 10: Bimodal von Mises distribution fit to fire frequency data from Kazakhstan 0.5⁰ grid cell. Fire 

season is considered to start in April and end in mid-October. Bars represent fire counts in 10-

day composites, the green cloud is the fitted von Mises distribution, and the green dots on the 

circumference are the central dates of each fire sub-season. 

 

Figure 11: Multimodal von Mises distribution fit to fire frequency data from Indonesia 0.5⁰ grid cell. No 

clear fire season is discernible, in spite of some data concentration in February-April, with 

secondary modes of activity in June and October. No fire seasonality filter is applied in cases 

with more than two modes, implying processing data for the full year. Bars represent fire counts 

in 10-day composites, the green cloud is the fitted von Mises distribution, and the green dots on 

the circumference are the central dates of each fire sub-season. Distribution fit is poor (low 

MEF) and central dates are inaccurate. 
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The von Mises probability density function map was smoothed with a 5 x 5 Gaussian filter, which also 

filled gaps left by cells that did not satisfy either the model fit or data availability conditions. Figure 12 

shows the pdf of a filtered cell, after normalisation to a 0 – 1 range. 

 

Figure 12: Smoothed, normalized von Mises fire count probability density function (black line). The 

coloured lines show the contributing pdf contained with the 5 x 5 Gaussian filter kernel. 

 

4.2.1.3.4 Scoring annual changepoint maps 

An annual burned area candidate changepoint map is constructed for each global tile, containing three 

of the layers corresponding to the time series changepoint evaluation criteria. A new ideal point is 

defined, where the alternatives under evaluation are the changepoints selected out of each pixel/time 

series, and each pixel is scored in the same way as previously done for the single-pixel annual time 

series.  

Global-scale scoring of the candidate changepoints from each timeseries/pixel relies on the calculation 

of Euclidean distances to an ideal and to an anti-ideal, which are represented by sets of points, rather 

than by single points. The ideal set contains one point/site/year from 9 of the 10 project regional study 

sites (Borneo was excluded due to lack of exemplary cases of burned areas, during the study period), 

representing the most paradigmatic examples of fire-affected pixels, in terms of non-rescaled values 

variables mean segment reflectance decrease, the post-change point segment reflectance, and the 

associated seasonal weight. Definition of ideal points at the scale of each study site/tile contextualizes 

the scoring procedure, taking into account the global variability in the fire-induced spectral changes that 

result from heterogeneity in vegetation, meteorological conditions, and land-use. The convex hull of this 

set of ideal points was determined and distances between the change point selected from each time 

series/pixel and the ideal set are calculated. The distance to the nearest point in the convex hull is selected 

(minimum distance) as the distance to the ideal set, according to a mathematical definition of distance 

between a point and a set of points. Distances to an anti-ideal set were also calculated for each pixel as 

the shortest of the orthogonal distances to a constant value of 0.02 and 0.2 units, respectively for mean 

segment reflectance decrease and post-change point segment reflectance (Figure 13,). Changepoints 

corresponding to a reflectance decrease higher than 0.2 were considered an effect of residual 

atmospheric contamination, while post changepoint segments with mean reflectance lower than 0.05 

typically correspond to unmasked dynamic water bodies. Finally, for each timeseries/pixel, the distances 

to the ideal (Dii) and anti-ideal (Daii) sets were combined to obtain the p-scores. Figure 13 illustrate the 

global-scale scoring of the candidate changepoints fot Angola 10° x 10° tile. 
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Figure 13: Changepoint density scatterplot from Angola 10° X 10° tile (L10C19). The red polygon 

represent the convex hull of a set of ideal points. The blue lines represent the constant value 

anti-ideal levels of 0.02 and 0.2 units, respectively for mean segment reflectance decrease and 

post-change point segment reflectance 

 

Figure 14 - Figure 18 illustrate the evaluation criteria maps and a distance-to-ideal map for Australia 

10° x 10° tile (L10C31) for 2007. 
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Figure 14: Reflectance decrease map 

 

Figure 15: Post-changepoint segment mean reflectance map 
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Figure 16: Minimum Euclidean distance to the set of ideal points map 

 

Figure 17: Smallest of the two orthogonal distances to the anti-ideal values 
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Figure 18: Changepoint score based on reflectance change, post changepoint reflectance and fire 

seasonality. Higher values (red) are closer to ideal, i.e. more likely to represent burned areas. 

4.2.1.4 Markov random field image segmentation 

The pixels with no computed score or detection date are not classified as burned or unburned. The 

remaining pixels are classified according to the procedure described below. 

The previous steps of the algorithm lead to a characterisation of each pixel of the image through two 

variables: score and detection date. The rationale behind this last processing step is to establish a global 

classification of the pixels of the image taking into account the spatial relations between pixels and the 

time relations between dates of detection. The algorithm is a standard image processing algorithm that 

solves the maximum a posteriori – Markov random field (MAP-MRF) problem, which arises in image 

segmentation or image restoration. 

4.2.1.4.1 Parameters 

To define the graph from the score and date of detection values we first need to establish the spatial 

neighbourhood for each pixel (e.g. 4 or 8 neighbours) and we need to set four parameters: min_score, 

max_score, max_diff and v0 which can be understood as follows: The parameters min_score and 

max_score establish respectively the score values below and above which the classification of the pixel 

is set solely by the score. If score<min_score the pixel is classified as “unburned”; if score>max_score 

the pixel is classified as “burned”. The parameters v0 (a number between 0 and 1) and max_diff (in 

days) establish the role of the detection dates in the image segmentation problem. If pixel X is a spatial 

neighbour of pixel Y, and if the detection dates for X and Y differ D days, then the value v(X,Y) of the 

connection between X and Y is a number between 0 and 1. V0 equals 1 when D=0 and decreases linearly 

to 0 until D = max_diff. Formally,  v(X,Y) is defined as: if D > max_diff then v(X,Y) is 0; if D <= 

max_diff the value is v0 *(1-D/max_diff). Hence, the value of the connection between two neighbours 

is highest when the detection date for both neighbours is the same and vanishes to 0 when the dates of 

detection are more than max_diff days apart. 
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4.2.1.4.2 Graph 

The vertices of the graph are the pixels with known score and detection dates. There are two additional 

vertices that represent the classes “burned” and “unburned”. There are two types of edges in the graph.  

The first type of edges connect either the vertex “unburned” to a pixel X, or connect X to the vertex 

“burned”. If for a pixel X, score<mean_score, where mean_score is the average of min_score and 

max_score, then there is a directed edge from the vertex “unburned” to the pixel X, with weight given 

by the logit of p_score. The variable p_score takes values in [0,0.5] and is defined by p_score = (score-

min_score)/(max_score-min_score)  if score > min_score, and it is the minimum value of those p_score 

if score<= min_score (to prevent p_score = 0). The logit function is defined by integer nearest to Logit 

(p) = 100 * p/(1-p). If score >= mean_score for pixel X, there is a directed edge in the graph from X to 

“burned”, with weight given by Logit(p_score), where p_score is defined as before, but takes values in 

[0.5,1], and is always lower than 1. The second type of edges in the graph connect pixels X and Y that 

have a positive value v(X,Y) as defined earlier. If X and Y are connected, then we add to the graph two 

directed edges, one from X to Y with weight Logit (v(X,Y)) and the other from Y to X with the same 

weight. As for the p_score, to prevent v = 0 or v = 1, we assign to it the minimum or maximum p_score 

value in the range (0,1). Figure 19 displays the topology of a MAP - MRF graph for an illustrative 10 * 

10 pixel area. 

 

4.2.1.4.3 Solution of the problem 

The solution of the problem is the minimum source/sink-cut in the graph, where the source is the vertex 

“unburned” and the sink is the vertex “burned”. The minimum cut defines a 2-partition of the pixels in 

the graph: the first element of the partition are the pixels connected to the vertex “unburned” and the 

second element of the partition are the pixels connected to the vertex “unburned”. This partition gives 

the segmentation of the image into unburned and burned pixels. 

 

Figure 19: Topology of the graph of the MAP-MRF problem for a 10 x 10 pixel area. The pairs of connected 

pixels are spatial first-order neighbours and have detection dates at most 20 days apart. The 

solution of the MAP-MRF problem is partition of the pixels in an "unburned" and a "burned" 

component defined by the minimum cut in this graph. 
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Figure 20 displays the result of applying the Markov Random Field algorithm to the distance to ideal 

data (p-score) of Figure 198, using 0.5 as the threshold for initial assignment of pixels to the categories 

unburned (< 0.5) and burned (> 0.5). 

 

 

Figure 20: MRF revised burned area map, Australia, 2007 
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4.3 MERIS detailed algorithm description 

When designing an algorithm on a global scale, it is necessary to take into account that the developed 

methodology is meant to be automatic and operational. Hence, the algorithm must be robust to account 

for potential problems in the input data, and as less site-dependent as possible, to tackle the very diverse 

regional burning conditions found worldwide. The most appropriate solution that satisfies these criteria 

is a hybrid approach using both thermal and reflectance data. The former detects active fires, and the 

latter the post-fire burned signal.  In order to consider a proper balance between omission and 

commission errors, the algorithm includes two different phases: seed identification, which aims to 

minimize commission errors, and contextual analysis (region growing), which is mostly included to 

reduce omission errors. 

The following sections describe in more detail the general structure of the algorithm and the two phases 

developed. 

4.3.1 MERIS algorithm general scheme 

Hybrid algorithms use post-fire spectral reflectances or reflectance changes together with thermal 

anomalies (active fires) to determine the Burned Area (BA) extent. Since both signals are 

complementary, the combination of spectral reflectance information with active fires to identify BA 

should provide a more reliable discrimination of BA areas. Several authors have shown these benefits 

in previous papers (Fraser et al. 2000; Giglio et al. 2009; Giglio et al. 2005; Roy et al. 1999),  particularly 

with MERIS images (González-Alonso and Merino de Miguel 2009; González-Alonso et al. 2010).  

Usually hybrid algorithms make use of hot spot information following two approaches: 

 i) to estimate representative statistics of burned areas, by selecting reflectance values of a sample of 

burned pixels (a pixel is considered burned if it is associated to a hot spot), and then perform a burned/not 

burned classification of the remaining pixels (using Bayesian classifiers or other methods);  

ii) to confirm that a pixel previously classified as burned is in fact burned, wherever the burned patch 

has a hot spot inside or in the vicinity. 

In this case, we rely on the accuracy of MODIS Hotspot / Active Fire Detection Data set, (NASA 

FIRMS, 2012. MODIS Hotspot /Active Fire Detections. Data set. [http://earthdata.nasa.gov/firms].) to 

describe sampling points within fire perimeters, since they cover the period of MERIS operations. It is 

well known that HS do not provide a full description of fire-affected areas, as satellite sensors only 

detect those fires that are active when the satellite overpasses the fires. However, the high thermal 

contrast between burning and background pixels and the sensitivity of MODIS thermal channels, 

ensures a high confidence in detecting actual fires avoiding commission errors.  

An exploratory analysis of HS performance was made to detect burned perimeters by comparing HS 

with our fire reference data extracted from Landsat TM/ETM+. Results have recently been published 

(Hantson et al., 2013). Commission errors found were very low (<3 %) for all study sites, but omission 

errors (burned patches undetected), were relatively high (>25%) particularly for small BA patches. 

While HS for labelling fire dates has been proposed by other authors (Boschetti et al. 2010) we rely on 

HS to establish the most appropriate data for the post-fire temporal compositing, given the limitations 

of MERIS data for detecting a strong BA signal 

The MERIS BA algorithm specified here is based on the use of MERIS reflectance bands, spectral 

indices and both post-fire and multi-temporal analysis controlled by HS locations. Input data to the 

algorithm: spatial distribution of active fires (X,Y coordinates), MERIS reflectance bands 8 and 10, 

masks that were derived in the pre-processing chain of MERIS images (water, cloud, shadow, haze and 

snow masks), which are described in the ATBD v2.2 (Bachmann et al. 2014).  

A general scheme of the MERIS BA algorithm is shown in Figure 21. 

 

http://earthdata.nasa.gov/firms
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Figure 21: Approach for burned area detection algorithm 

 

4.3.2 Generation of spectral indices 

Spectral reflectance and mask information is used to obtain monthly and annual spectral reflectance and 

index composites (Figure 21). Following previous literature review and sensitivity analysis conducted 

within the fire_cci project, the near infrared reflectance (NIR) has been used together with the GEMI 

index (Pinty and Verstraete 1992) to discriminate BA. NIR and GEMI index have been extensively used 

for burned area mapping in different ecosystems (Barbosa et al, 1999b in Africa; Pereira, 1999 in a 

comparative study with AVHRR data; Chuvieco et al, 2002 in Mediterranean areas; Martin et al., 2005 

in the Mediterranean; Chuvieco et al., 2008 in Boreal forest). GEMI expression is (Pinty and Verstraete 

1992):  
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      (9) 

 

GEMI and NIR should show a significant decrease when a fire occurs. This is commonly the case, as it 

is shown in Figure 22, but changes in the expected behaviour may be caused by other factors, such as 

clouds, shadows, haze, snow melting or flood. 
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Figure 22: Temporal evolution GEMI and NIR reflectance (MERIS B10) for a burned pixel in 

Kazakhstan. The fire occurred at day 260, indicated by the arrow. 

 

BA detection is performed in a two phase process: the first one aims to detect seed pixels (section 4.3.6) 

while the second one will develop contextual criteria around these seed pixels (section 4.3.7).   

 

4.3.3 Mask threshold identification 

All threshold values have been set empirically by performing several studies on a selection of images in 

all study sites. Final threshold selection is as follows: 

- Cloud, snow, shadow and water masks: 30 % 

- Haze: 40 %.  

An example of the influence of the haze threshold is shown in Figure 23 and Figure 24. The values of 

bands 8 and 10 correspond to a pixel in Kazakhstan study site in 2005. In Figure 23 only the static water 

and cloud (< 30 % cloud coverage) masks have been applied. Shadow, haze and snow were not filtered. 

In Figure 24, static water, cloud (< 30 % coverage) and haze (< 40 % coverage) masks have been applied.  

Julian date 
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Figure 23: Temporal evolution of R and NIR reflectance for a pixel in Kazakhstan. All available images of 

the year with less than 30 % of clouds are included. 

 

 

Figure 24: Temporal evolution of R and NIR reflectance for the same pixel represented in Figure 22. 

Images with haze > 40 % have been discarded. 

 

As can be seen by comparing Figure 23 and Figure 24, equilibrium must be reached between image 

availability and noise reduction. A cloud threshold was established at 30 % after several tests with 

samples of images for different study sites. A more restrictive threshold would lead to lack of 

information for long time periods, especially in areas where clouds are a known permanent issue 

(Tropics). This value offers a good compromise between quality of the data filtered and number of 

observations discarded.  

A numerical example of the procedure to set the haze threshold is shown hereafter and is illustrated in 

Table 2, Table 3 and Table 4. Figure 25 highlights the area in the Australian study site from where data 

have been extracted. Table 2 show the HS values for a small window (red box in Figure 25) of the 

Australian study site (pixels from (470:480, 1,240:1,250) for September 2005. The HS values are 

extracted from a Thiessen matrix, which is computed by obtaining for each pixel the closest HS and 

labelling it with the date of that HS. A more comprehensive explanation on the creation of the Thiessen 

matrix is given in section 4.3.3.3. Table 4 shows the dates of the first valid MERIS observation after the 
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date registered in the HS Thiessen matrix, when cloud and haze thresholds are set to 30. Table 4 shows 

the dates of the first valid MERIS observation after the date registered in the HS Thiessen matrix when 

cloud and haze thresholds are set to 30 and 40, respectively.  

 

 

Figure 25: Australian study site, the red box corresponds to the area where values were extracted for 

Tables 2, 3 and 4 for September 2005. 

 

 

Table 2: HS matrix dates. 

271 271 271 271 271 271 267 267 267 267 267 

271 271 271 271 271 271 267 267 267 267 267 

271 271 271 271 271 267 267 267 267 267 267 

271 271 271 271 267 267 267 267 267 267 267 

271 271 271 267 267 267 267 267 267 267 267 

271 267 267 267 267 267 267 267 267 267 267 

267 267 267 267 267 267 267 267 267 267 267 

267 267 267 267 267 267 267 267 267 267 267 

267 267 267 267 267 267 267 267 267 267 267 

267 267 267 267 267 267 267 267 267 267 267 

268 267 267 267 267 267 267 267 267 267 267 
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Table 3: Dates for the composite when cloud and haze thresholds are set to 30. 

272 300 300 300 300 300 300 300 -4 300 272 

300 300 300 300 300 272 300 300 -4 300 300 

300 300 300 -4 -4 300 300 300 300 300 300 

300 300 300 -4 -4 -4 -4 300 300 300 300 

300 272 300 -4 -4 -4 -4 -4 300 300 300 

272 272 300 -4 -4 -4 -4 -4 300 300 300 

300 300 300 300 -4 -4 -4 -4 300 300 300 

300 300 300 300 -4 -4 -4 -4 300 300 300 

300 300 300 300 300 -4 300 300 300 300 300 

300 300 300 300 300 300 300 300 300 300 300 

272 300 300 300 300 300 300 300 300 300 300 

 

Table 4: Dates for the composite when cloud and haze thresholds are set to 30 and 40 respectively. 

272 272 272 272 272 272 272 300 300 269 269 

272 272 272 272 272 272 272 300 300 269 269 

272 272 272 272 272 269 272 269 269 269 269 

272 272 272 272 269 269 269 269 269 269 269 

272 272 272 272 -4 269 269 269 269 269 269 

272 272 272 300 -4 269 269 269 269 269 269 

272 272 272 300 300 269 269 269 269 269 269 

300 300 300 300 300 269 269 269 269 269 269 

300 300 269 272 300 269 269 269 269 269 269 

272 272 272 272 272 269 269 269 269 269 269 

269 272 272 269 272 300 300 269 269 269 269 

 

As can be concluded from the direct comparison of HS matrix Table 2 and the composite dates (Table 

3), the dates obtained through the images available (Table 3) have a delay of about 30 days when 

compared to the HS dates, and for some pixels there is no valid data available within a 45 days range (-

4 value). The conclusion is that a modification on the cloud threshold will not introduce relevant 

changes, but an increase in the haze threshold would. In Table 4, when the haze threshold is set to 40, 

most of the pixels have a date closer to the HS matrix obtained from the Thiessen polygons (Table 2) 

and most of the non-available data have been replaced by proper dates. Haze threshold is therefore set 

to 40.  
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4.3.4 Generation of post-fire composites and annual trends 

MERIS temporal resolution characteristics and the exploratory analysis led to the conclusion that the 

best algorithm implementation would be based on a series of temporal composites. Two aspects have to 

be considered: the length of the compositing period and the criteria to select the most adequate pixel 

from the time series. 

4.3.4.1 Compositing length 

After analyzing different alternatives (from monthly to annual composites) the monthly composite 

option is selected. This length is a good balance between the number of images to obtain a cloud free 

composite while keeping the spectral contrast of the post-fire burned signal. The composite is generated 

with images from 60 consecutive days, but monthly aggregated. Therefore, 12 composites are obtained, 

each one of them containing information from the specific month and from the month after. Seed pixel 

identification and region growing phases of the algorithm are performed using the post-fire and annual 

reference composites. Generation of these composites is detailed in the following sections.   

4.3.4.2 Post-fire composites: NIR-HS, GEMI-HS. 

The compositing criterion should focus on emphasizing the post-fire reflectance signal. In order to do 

so, there is a need to establish a method to select the day with the most adequate observation, and the 

band or spectral index that will be computed for the selected date to obtain the final composite.  

After exploring different possibilities developed for other sensors (Chuvieco et al. 2005) and different 

compositing techniques to obtain the monthly composite, the two implementations that present better 

results in terms of spatial or temporal consistency are:  

4.3.4.3 Closest day to the HS 

The idea behind this option is to select the date that will most likely be burned, following the HS spatial 

distribution. The computation of this composite is based on the Thiessen polygon matrix, which defines 

the area that is closer to a particular HS than to another HS. An example of this matrix is shown in Figure 

26 for the Australian study site in October 2005. Spectral index values (GEMI) and NIR reflectance for 

the date obtained from the HS matrix are computed per pixel. If no data exists for that day or the data is 

considered not valid (it is filtered by the mask thresholds) the next available day is used to compute the 

spectral index and so on until the last day of the bi-monthly space is reached.  The main advantage of 

this technique is that it ensures temporal consistency within the MERIS data. Nevertheless, when there 

are few fires, the Thiessen matrix creates artificial spatial structures that are not associated to fire events. 

This effect is also enhanced by the fact that images do not have any BRDF correction applied and hence 

images from different illumination and observation conditions are being used as equivalent. This issue 

may need resolving in later work to test the actual effect. An example of the Julian dates from the MERIS 

images that are being used to create the composite is shown in Figure 27. Figure 28 represents the NIR 

values associated to these dates; the spatial structures are highlighted with the red circle. 
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Figure 26: Thiessen matrix for Australian study site in October 2005 

 

 

 

Figure 27: Julian dates associated to MERIS images for Australia October 2005 
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4.3.4.4 2nd NIR minima 

The second technique is based on obtaining the 2nd lowest NIR value in a two month time series. The 

minimum NIR can be related to burned areas and avoids selection of clouds, but can be confused with 

cloud shadows, which also have a very low NIR reflectance. The second minimum should minimize this 

potential error. The use of lower values aims also at reducing the BRDF effect impact on the composite 

since values in the same range should be related to similar illumination and viewing conditions. This 

technique ensures a higher spatial consistency than the method in 4.3.3.3, as can be seen in Figure 29. 

The main drawback of this technique is that due to the variations in reflectance values over time, other 

changes not related to a fire (for instance cloud shadows) may be included in the composites, and 

therefore it can introduce commission or day detection errors. An example of the dates associated to the 

second minima NIR in October 2005 for the Australian study site is shown in Figure 30.  

 

 

Figure 28: NIR reflectances related to the Julian dates in Figure 274 

Figure 29: NIR second minima for October 2005 in the Australian study site 
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4.3.4.5 Final compositing criterion 

The main driver for the methodology to create the monthly composite is to obtain a composite where 

the information is as spatially and temporally consistent as possible. Each one of the presented 

methodologies (introduced in 4.3.4.3 and 4.3.4.4.) covers one of these aspects. Therefore, it was decided 

to merge the two compositing techniques. The techniques were combined following the next steps:  

 Build Thiessen matrix of the closest day to the HS 

 Identify 3 NIR minima every 2 months 

- Closest minimum after the Thiessen matrix date is chosen. 

- If all minima occur before the HS date, the 2nd minimum is chosen. 

If all minima occur before the HS date it is assumed that no fire occurred, therefore the 2nd minimum 

before the HS is chosen, in order to avoid possible cloud shadow effects.  

The final composite includes therefore NIR reflectance from band 10. GEMI composite is also computed 

for the same dates identified using bands 8 and 10.  

The result of combining both techniques leads to higher spatial and temporal consistency as shown in 

Figure 31 and Figure 32. 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Julian dates associated to the selection of the NIR second minima 
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Figure 31: NIR final composite for Australia in October 2005 

Figure 32: Julian dates for Australia in October 2005 
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4.3.5 Annual reference trends 

In addition to the post-fire composites, an annual reference composite is created. This annual composite 

is called DifGEMI and is obtained as the difference between the annual maximum GEMI value per year 

and the monthly GEMI-HS post-fire composite. 

The annual maximum GEMI maximizes the GEMI value to account for the maximum seasonal 

greenness of each pixel. Pixel values for the annual series are selected in the period when vegetation has 

a maximum productivity. The monthly GEMI-HS composite accounts for the potential post-fire value. 

It was assumed  that the change between annual maximum (Annual maximum GEMI) and the post-fire 

value (included in the GEMI monthly composite) should be the higher for burned pixels than for 

unburned ones, thus emphasizing post-fire spectral changes. Therefore, by obtaining the DifGEMI, the 

expected change between that maximum value and the post-fire value is the highest, helping to identify 

the areas that have burned.  

Examples of these two composites and their difference for October 2005 are shown in Figure 33. 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.6 Seed selection 

4.3.6.1 Criteria for selecting seed pixels 

This phase is highly relevant in the BA detection algorithm. The objective is to select the most clearly 

burned pixels, from which a region growing algorithm is applied to obtain the final detection of the BA 

patch. The main goal of this phase is to avoid commission errors, as false seed pixels would create false 

BA patches on the growing phase. The seeds are selected on a monthly basis. This phase starts from the 

monthly composites, explained in the previous section.  

Since spatial resolution of the MODIS HS is 1000 m, and the MERIS one is 300 m, the MERIS pixel 

within the vicinity of a HS that was more likely to have been burned should be selected. Therefore, the 

lowest value on the 3 x 3 MERIS pixels surrounding the MODIS HS coordinates (see Figure 34) is 

identified. 

  

Figure 33: Maximum GEMI for 2005, GEMI in October 2005 and DifferenceGEMI composites for the 

Australian study site. 
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To avoid commission errors, we introduce an additional temporal change constrain to the MERIS pixels 

identified, and accept only pixels that showed a NIR reflectance decrease in time t from the previous 

period t-1, as burned areas should always have a lower signal than before the fire.  

These pixels are named potential active fires (PAFs). 

4.3.6.2 Identification of burned statistics 

Once the PAFs are selected, two cumulative distribution functions of burned and unburned (CDFs) are 

built. Burned pixels are at this stage identified by the PAFs from the previous phase (4.3.6.1), while 

unburned pixels are selected as those that do not have a HS in a matrix of 64 x 64 pixels and that have 

not been classified as burned in the previous months.  These frequency curves are built for each monthly 

composite and study site. In terms of global processing the corrected reflectances are gridded into tiles 

of 10 x 10 degrees (3,600 x 3,600 pixels at MERIS spatial resolution). These tiles are the input files for 

all processes of the MERIS BA algorithm. Therefore the same procedure described here is applied to 

the 10 x 10 degrees tiles to identify burned statistics.  

Cumulative frequency curves are derived from both distributions (Figure 35). These curves are used to 

define a NIR burned threshold (TB). The closer the curves the more pixel values are shared by the 

burned and unburned distributions. This implies less capacity to discriminate between burned and 

unburned pixels. 

The threshold value of the burned signal is defined as the first decile of the burned curve below the 

decile 1 of the unburned curve. If the curves are well separated then the burned decile should be higher 

(and more values will pass the threshold condition) than if the curves are close to each other. An example 

of a case with worse separation is shown in Figure 35a, and represents the values obtained for May 2008 

in Canada (tile L03C07). An example of a case with better separation between classes is shown in Figure 

35b. It corresponds to June 2008 in South Africa (tile L11C20). 

 

 

 

 

Figure 34: HS vs MERIS pixels. 
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Figure 35: Threshold based on decile 10 of the unburned CDF for cases with worse (a) and better (b) 

separation between classes, correspondent to May 2008 in tile L03C07 (Canada) and June 2008 

in L11C20 (South Africa) respectively. In a) TB for seed and growing phases remains the same 

(single arrow). In b) TB for the seed phase corresponds to decile 8 (left arrow) and TB for the 

growing phase corresponds to decile 9 (right arrow). 

 

4.3.6.3 Final seed selection 

The final step to classify a pixel as seed verifies three conditions:  

- The NIR value has to be lower than the TB threshold identified.  

- There is a PAF identified (from applying step 1 and 2 detailed in sections 4.3.6.2.) in a 9 x 9 

matrix around the pixel being classified. 

- The difference in NIR values from the composite in month N and the previous month is a 

negative value, to ensure that for the pixels in the 9 x 9 matrix there is a drop in NIR 

reflectance.  

A scheme illustrating this procedure is shown in Figure 36:  
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Figure 36: Diagram for seed selection 

4.3.7 Region growing 

This phase focuses on improving the delimitation of BA patches applying contextual algorithms to the 

seed pixels. Those pixels located in the neighbourhood of the seed pixels are candidates to extend the 

BA area if they fulfill additional requirements in terms of spectral similarity with the seed pixels and of 

new thresholds defined for this phase. 

In this case 3 conditions need to be verified by the pixels surrounding a seed to be classified as burned:  

- NIR threshold value is reviewed in this phase. The threshold is modified according to the ability to 

distinguish between burned and unburned classes identified in the seed phase. Assuming a normal 

distribution, if the burned decile used to define the seed threshold is 7 or higher, the burned/unburned 

curves cross after at least one standard deviation of the mean burned values. In those cases the ability to 

distinguish between burned and unburned classes is considered high. Therefore, the new threshold 

condition for the growing phase is raised up to the decile 9 of the burned pixels curve (Figure 35b). If 

the burned decile used to define the seed threshold is lower than 7 then the ability to discriminate burned 

and unburned classes is considered low. In this case, in order to ensure less commission errors in the 

growing phase, the threshold will be the one defined in the seed phase.  

- The diffGEMI annual composite has to verify a decreasing threshold between seed and neighbour 

pixels. Pixels will be classified as burned if the neighbours to a seed pixel have higher values than the 

threshold. The threshold is defined from the diffGEMI value found in the seed pixel multiplied by 0.9.   

- The third condition relies on a minimum drop that has to be verified for each pixel. The decrease in 

the NIR values (DNIR) between t and t-1 for each candidate BA pixel has to be higher than the decrease 

observed for unburned areas. With this criterion the aim is to avoid neighbor areas to the seeds that 

might have fire-unrelated changes.  

A final test is applied to avoid large commission errors in a few areas with dark covers, where the region 

growing process might not perform properly (specific regions of Australia, China and India, for 

instance).  In this case, we filter out large polygons when the number of burned pixels exceeded largely 

the number of hotspots. We established an empirical value of 30 times (MERIS BA pixels/HS), based 

on previous findings from Hantson et al. (2013), who compared the distribution of HS and Landsat-

derived burned patches in the same study sites used to develop this algorithm. 

Figure 37 shows a scheme of the region growing phase. 
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Figure 37: Region growing phase 

A final product example is shown in Figure 38. Julian dates of BA obtained for year 2006 in the 

Australian study site are represented. 

 

 

Figure 38: Julian dates of burned areas identified with the MERIS BA algorithm for the Australian study 

site in year 2006. 
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