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1. SCOPE 
This is a report in preparation for a comprehensive Algorithm Theoretical Basis Document 

(ATBD) that will be completed to describe the Sea Surface Temperature Climate Change 
Initiative Version 3 Climate Data Record (SST CCI v3 CDR). The full ATBD will be 

document ATBD D2.1 v3.  

The form of content of this interim ATBD report is: 

• notes in short form elements arising from the algorithm development work 
between months 9 and 18 within Phase 3 of SST CCI that may be required to be 
reflected in the full ATBD (D2.1 v3), depending on the final implementation 
decisions for the v3 CDR 

• complete text that may be incorporated in the full ATBD where this has already 
been prepared in the course of work to date 

An further interim ATBD report (D2.1 v1) described algorithm developments achieved 

during months 1 to 9 of within Phase 3 of SST CCI. 

The specific scope of this document is in summary: 

• Upgrades to the radiative transfer used for optimal estimation with respect to 
representation of atmospheric aerosol, exploiting aerosol re-analyses 

• Bias-aware optimal estimation (BAOE) theory, and the BAOE tuning results for 
AVHRRs on NOAAs 8, 9, and 11 (covering the late 1980s) 

 

  



 Commercial in Confidence  
 
ESA/AO/1-9322/18/I-NB ESA CCI Phase 3 Sea Surface Temperature (SST)  

9 January 2021 

Algorithm Theoretical Basis Document D2.1  v2 

 
Commercial in Confidence 

3 

 
 



 Commercial in Confidence  
 
ESA/AO/1-9322/18/I-NB ESA CCI Phase 3 Sea Surface Temperature (SST)  

9 January 2021 

Algorithm Theoretical Basis Document D2.1  v2 

 
Commercial in Confidence 

4 

2. REPRESENTATION OF AEROSOL IN RADIATIVE 
TRANSFER FOR OPTIMAL ESTIMATION 

2.1 Introduction 

The Advanced Very High Resolution Radiometers (AVHRRs) are single-view sensors 

whose retrieval is made using optimal estimation (OE) (see section 0). Part of this retrieval 

process involves fast radiative transfer simulation, of brightness temperatures and partial 

derivatives of brightness temperatures with respect to state variables. The climate data 
record (CDR) from SST CCI in its version 2 (“CDR v2”) (Merchant et al. 2019) did not 

include simulation of tropospheric aerosol within the fast radiative transfer model (RTM) 

because of limitation of the RTM’s capability, and this contributed to the biases present 

related to desert dust aerosol in particular (Merchant and Embury 2020). 

The fast RTM is “RTTOV” , which now has extended capabilities (Saunders et al. 2018). 

Moreover, more information is available about aerosol distributions from atmospheric re-

analyses. This section therefore describes the significant updates to the exploitation of 
radiative transfer simulation within the SST CCI processing chain. 

2.2 The RTTOV model 

RTTOV is now available in v12.3, which introduces several improvements over version 11.3 

used for CDR v2 including (among others):  

• Support for aerosol species used within the Copernicus Atmospheric Monitoring Service 
(CAMS) 

• Support for variable CO2 concentration 

• New solvers for scattering: Discrete Ordinates Method (DOM) and MFASIS  

• Optimisation of gas optical depth calculation  

• API updates and improvements   

In the context of CDR v3 the first two RTTOV updates are the most important. The CAMS 

aerosol properties allow RTTOV to use the aerosol outputs of the CAMS reanalysis. 

Variable CO2 support allows the RTM outputs to include the effect of significant (~30%) 
changes in atmospheric CO2 over the last 40 years. In addition, there are now updated gas 
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transmittance coefficients available for RTTOV 12.3 which make use of the latest 

spectroscopy and water vapour continuum parameterisation1.  

2.3 RTTOV aerosol coefficients 

RTTOV v12.3 is supplied with two sets of aerosol scattering coefficients based on the 

OPAC and CAMS aerosol types shown in Table 1.  

Table 1: OPAC and CAMS aerosol types supported by RTTOV 12.3  

OPAC CAMS 

Insoluble  Black Carbon  

Water soluble  Dust, bin 1, 0.03-0.55  

Soot  Dust, bin 2, 0.55-0.90  

Sea salt (acc mode)  Dust, bin 3, 0.90-20.0  

Sea salt (coa mode)  Ammonium sulphate  

Mineral (nuc mode)  Sea salt, bin 1, 0.03-0.5  

Mineral (acc mode)  Sea salt, bin 2, 0.5-5.0  

Mineral (coa mode)  Sea salt, bin 3, 5.0-20.0  

Mineral transported  Hydrophilic organic matter  

Volcanic ash    

New volcanic ash    

Asian dust    

Because temporally evolving tropospheric aerosol estimates are available from the CAMS 

re-analysis back to 2003, we adopt use of the CAMS aerosol modes (more discussion 

below).  

 

1 Details: line-by-line radiative transfer model, LBLRTM 12.8 using “HITRAN2012 spectroscopic 
coefficients and “MT_CKD” water vapour continuum version 3.2. 
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A limitation of the CAMS model is that it does not include a component to represent the 

stratospheric aerosol from Pinatubo and other volcanic eruptions. Therefore, we have 

generated additional aerosol scattering properties matching the stratospheric aerosol 

approach used in CCI Phase 2. These aerosol scattering properties are calculated using 
Mie theory from input datasets of refractive index and size distribution. We used two sets 

of data: the “SUSO” refractive index and size distribution from OPAC; and 75% H2SO4 at 

215 K refractive index data from HIRTAN 2016 (Biermann et al. 2000) size distribution 

r=0.6, sigma = 1.2. The results are very similar in terms of brightness temperature impact, 

giving good confidence, although the implied aerosol masses for a given change in 

brightness temperature do differ significantly.  

2.4 Usage of CAMS aerosol information 

The CAMS reanalysis (Bozzo et al. 2020) uses ECMWF’s 4DVar data assimilation scheme 

running at spatial resolution of ~80 km (TL255 grid) and 60 vertical model levels (from 

0.1 hPa to surface), the analyses time-step is 3 hours. However, the CAMS reanalysis 

period is 2003 to 2018 so it does not cover the full period of the SST-CCI processing. In 

order to process the full SST-CCI period and reduce the required data download to a 

manageable volume we use the CAMS aerosol climatology (Bozzo et al. 2020); this 
provides us with profiles of aerosol loading for a given month and location. 

To represented interannual variability of aerosol within the SST CCI processing, the profiles 

from the climatology are scaled to match time-specific column aerosol mass loadings when 

available. In other words, interannual variability in amount of aerosol can be 

accommodated, but the relative vertical distributions are always climatological.  

The CAMS aerosol climatology provides monthly layer-integrated mass concentrations 

(kg/m2) for 11 aerosol components on 60 model levels and 3° × 3° horizontal grid. The 

components are: Sea Salt bin1 (0.03-0.5 μm); Sea Salt bin2 (0.5-5.0 μm); Sea Salt bin3 
(5.0-20.0 μm); Mineral Dust bin1 (0.03-0.55 μm); Mineral Dust bin2 (0.55-0.9 μm); Mineral 

Dust bin3 (0.9-20.0 μm); Organic Matter (hydrophilic); Organic Matter (hydrophobic); Black 

Carbon (hydrophilic); Black Carbon (hydrophobic); (tropospheric) Sulfates.  

We undertook simulations of aerosol impact on brightness temperatures for typical SST 

sensors to understand the relative importance of these types. Mineral dust aerosols were, 

as expected, the most impactful, with impacts of order 1 K (for affected locations). All other 

types affect brightness temperature at levels mostly <0.1 K, but over larger portions of the 

world. Since the impact of several modes could reach of order 0.1 K, this remains relevant 
to SST, although not large, and so we decided to include all aerosol types in the simulations 

to simulate relevant impacts whenever present. 
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The RTTOV simulations influence both cloud detection and the OE. Simulations are 

performed on the full state vector, which is supplied by weather re-analysis profiles (next 

section) and all the CAMS aerosol types as noted previously. 

There are two ways in which aerosols can be implemented, according to whether we treat 
the aerosol information as a fixed parameter of the simulations, or as a parameter which 

may be estimated. Fixed parameters are included in the full state vector for simulation, but 

do not appear in the reduced state vector of parameters that may be retrieved. This 

approach is used for all the parameters other than mineral dust. The mineral dust profiles 

are also included in the full state vector for simulation, and additionally the total dust mass 

(integrated vertically and with respect to particle size) is included in the reduced state 

vector, which means it may be retrieved. Where a sensor has insufficient spectral 

information to be informative about dust, including for AVHRRs, the dust mass is 
nonetheless not retrieved, but the availability to the reduced state vector enables retrieval 

from other sensors with more channels, which will be of relevance in future work (towards 

CDR v4).  

The sequence of use of the CAMS aerosol information in L1 processing is as follows: 

1. Load Climatology  

2. Interpolate to required latitude/longitude/time using tri-linear interpolation (treating each 12 

monthly mean as the instantaneous value at the 15th day of each month)  

3. Use surface pressure to calculate sigma pressure levels and interpolate to NWP pressure 
levels (interpolation linear in log pressure)  

4. Convert from cumulative mass to layer mass  

5. Convert to mass mixing ratio (kg/kg)  

o layer aerosol (kg/m2) / layer thickness (km) = aerosol density (g/m3)  

o aerosol density (g/m3) / air density (g/m3) = mass mixing ratio (kg/kg)  

o NOTE – RTTOV requires mmr with respect to moist air so air density is calculated for 

dry-air + water vapour  

6. If total column aerosol quantities are available (i.e., for 2003 to 2018, presently from 

the CAMS re-analyses column-mass data), scale climatological profiles to match the given 

total column mass. 
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7. Use (scaled) profiles in the RTTOV simulation. 

The RTTOV simulations are first used within Bayesian cloud detection, and then within OE 

(for AVHRRs). 

2.5 Weather re-analysis data: ERA-5 

The European Centre for Medium-range Weather Forecasting re-analysis 5 (ERA-5) 

(Hersbach et al. 2018) is at higher resolution and maintained beyond the cut-off date in 

2019 of the previously used re-analysis (ERA-Interim). It is therefore used within SST CCI. 

In conjunction with the RTTOV developments coded within the CCI processor as described 

above, support for ERA-5 atmospheric data has been implemented. 

Unfortunately, at the time of initiating processing for CDR v3, the data store used for SST 
CCI processing has accumulated ERA-5 data covering 2000 onwards, not the full record. 

It has been decided therefore to use ERA-5 for Metop AVHRRs. NOAA AVHRRs (used 

within SST CCI until both Metop-B and SLSTR-A are available) will, for their mutual 

consistency, be processed using ERA-Interim in CDR v3. 

Use of ERA-5 should have a positive impact and exclusively using it would be preferable, 

but the impact on the CDR v3 should be small, since the parameterisation of the OE 

retrievals (see next section) is undertaken using the same dataset, ERA-Interim for NOAA 
AVHRRs, as used in L1 processing. 
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3. BIAS-AWARE OPTIMAL ESTIMATION (LATE 1980S) 

3.1 Sea surface temperature retrieval 

Optimal estimation (OE) is a widely used inverse method in geophysics and remote sensing 

(Rodgers 2000). OE has been applied to retrieval of sea surface temperature from space-

based imagery (Kilic et al. 2018; Merchant et al. 2008; Merchant et al. 2009) as well as for 

many problems in atmospheric sounding (Carboni et al. 2019; McGarragh et al. 2018; 

Poulsen et al. 2012; Thomas et al. 2009). The most common formulation for SST retrieval 

jointly estimates the radiometric skin temperature, 𝑥, and the total column water vapour 

(TCWV), 𝑤. This is a reduced state vector, 𝒛 = [𝑥,𝑤]!, since the clear-sky brightness 

temperatures observed by the satellite, 𝒚, depend in general on a much longer list of state 

variables, 𝒙, including the vertical distribution of atmospheric temperature and humidity, the 

sea state and atmospheric aerosols. 

 OE requires a physical model of the observations, which in this case means a 

radiative transfer model (RTM) that operates on the full state vector, 𝑭(𝒙"). The subscript 

𝑎 here indicates a priori, meaning that the RTM is run on the prior estimate of the surface 

temperature and atmospheric state before retrieval. The prior state generally is obtained 

from a numerical weather prediction forecast or analysis. The physical model is also 

differentiated with respect to the retrieved variables: 

𝑲 =
𝝏𝑭
𝝏𝒛 Eq. 1    

 The retrieved state,	𝒛1, corresponds to the prior state, 𝒛", modified by the difference 

between the satellite observations and the expected brightness temperatures as simulated 
by the RTM on the prior state. This difference is transformed from the observation space 

to the state space by a gain matrix that accounts for the sensitivity of the brightness 

temperatures to the state variables Eq. 1 and the relative uncertainty of the observations 

and prior state: 

𝒛1 = 𝒛" + (𝑲!𝑺#$%𝑲+ 𝑺"$%)$%𝑲!𝑺#$%(𝒚 − 𝑭) Eq. 2    

 Here, 𝑺# characterises the error distribution in the observations relative to the 

simulations as an error covariance matrix. The uncertainty in each brightness temperature 

is given by the square root of the diagonal values of this matrix, while the off-diagonals 
indicate the strength of covariance (and, thus, correlation) of those errors. Similarly, the 

error covariance matrix of the prior information is 𝑺", whose first diagonal term is the square 

of the uncertainty in the prior estimate of SST. If the error distributions of 𝒛" and 𝒚 − 𝑭 are 

zero-mean, the retrieved value will have zero mean expectation of error. If the error 
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distributions are gaussian and correctly characterised by 𝑺# and 𝑺", the retrieved values 

will be an optimal solution and their uncertainty will be accurately characterised by the 

retrieval error covariance matrix 𝑺 = (𝑲!𝑺#$%𝑲+ 𝑺"$%)$%, which may be calculated as part 

of the evaluation of Eq. 2. 

 To obtain optimal estimates, therefore, the prior must be unbiased, the satellite 

calibration and radiative transfer simulations need to be negligibly biased with respect to 

each other and good estimates of two error covariance matrices need to be available. To 

meet these conditions for a system of 𝑛& observations and 𝑛' retrieved variables, we need 

good estimates of the following: 𝑛& + 𝑛' bias correction parameters (more if there are 

systematic tendencies which are fitted rather than a single offset); 𝑛& + 𝑛' uncertainty 

estimates (which again may vary according to the circumstances of the retrieval); and 
!
"𝑛&(𝑛& + 1) +

!
"𝑛'(𝑛' + 1) error correlation coefficients. For even the minimal system of 

retrieving SST and TCWV using three infrared brightness temperatures, this corresponds 

to 14 retrieval parameters if no parameter dependency is fitted. Some relevant information 

to constrain these parameters is generally available, such as error correlation being zero 

between independent sources of information, or estimates of instrument noise from sensor 

specifications or the onboard calibration system. Nonetheless, in past implementations, 
e.g. Merchant et al. (2009), simplifications such as diagonal error covariance matrices 

(Rodgers 2000) have been used along with judgements about many parameters. This 

element of judgement has been strongly criticized (Koner and Harris 2016; Koner et al. 

2015) and alternative inverse methods have been proposed with fewer parameters. The 

alternative response, pursued here, is to exploit a means of systematically evaluating the 

retrieval parameters, to which we refer as “bias-aware” optimal estimation. 

3.2 Bias parameter estimation 

Bias-aware optimal estimation (BAOE) combines the following elements: the insight in 

Rodgers (2000) that uncertain retrieval parameters can themselves be retrieved across a 

large number of retrieval instances; the idea that anchoring the system to some reference 

data that are taken to be unbiased can help disambiguate biases arising from different 

sources; and the use of expressions derived as diagnostics in data assimilation (Desroziers 

et al. 2005) as means of objectively estimating error covariances (Cordoba et al. 2017; 
Waller et al. 2016) after bias-correction. Merchant et al. (2020) (hereafter M20) presented 

a BAOE approach with reference to in situ references, and in Merchant et al. (2020) an 

approach for cross-satellite harmonisation of sea surface temperature is demonstrated. In 

this paper, in situ references are again used, but the derivation of the bias parameters is 

reformulated (relative to M20) to reduce complexity and the amount of radiative transfer 

modelling involved. 
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Observational biases are generally present, and mean that errors 𝒚 − 𝑭 do not have zero 

mean over a large ensemble of retrievals. The retrieved value is sensitive to the bias in this 

difference, irrespective of whether the source of bias is in the satellite calibration or in the 

forward model. We formulate the bias parameters, 𝜷, as corrections to be added to the 

forward model, but this choice does not imply that the forward model is the only or main 

source of systematic errors. 

The prior estimate of the state may also have non-zero mean error across many instances 

of retrieval. Previous results (M20) suggest that clear-sky areas of infrared imagery have 

lower TCWV than prior NWP humidity profiles; since these are all-sky profiles, this is 

physically plausible. Corrections for prior bias, 𝜸, are defined such that 𝒛" + 𝜸 will be 

unbiased. 

The 𝜷 and 𝜸 parameters are included in the extended state (retrieved) vector,	𝒛9. To anchor 

the estimate of observational biases, reference data (see §Error! Reference source not 
found.) are included as additional observations in the observation vector, 𝒚:. (This is the 

point of difference between the approach here and M20. In M20, the forward model was 

run using the reference data for the SST, rather than using the usual prior SST source for 

the retrieval as here. This is a simplification in procedure, since simulations for the latter 

source are naturally available from the satellite data processing chain.) 

The error covariance matrices are initially specified using expert knowledge and any 

information available on error sources such as instrument noise. The bias-correction 
parameters will be best estimated if the error covariances matrices are well estimated. 

Conversely, the error covariance matrices need to characterise the uncertainties after bias 

corrections have been applied. The iterative update of the error covariance matrices is 

therefore necessary and is discussed in §3.3. 

Using the initial estimates of error covariance matrices, the extended optimal estimator is 

solved across a large sample of cases for which in situ reference data are available. These 

cases are hereafter referred to as ‘matches’ since matching of the satellite data and in situ 
data is required, as described in §Error! Reference source not found.. The matches are 

randomised, to ensure independence of consecutive iterations with respect to geophysical 

parameters and errors in individual reference values. Updated bias parameters (and their 

uncertainties) are passed between iterations. The equation for the 𝑖th iteration thus uses the 

bias parameters retrieved in the 𝑖 − 1th retrieval. For the case where the reference data are 

measured values of SST, 𝑥( having estimated uncertainty 𝑢( , and the bias in the prior 

TCWV, 𝛾, is to be estimated, the extended OE equation is: 
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𝒛9) = 𝒛9" + >𝑲?!𝑺@#$%𝑲? + 𝑺@$%A
$%𝑲?!𝑺@#$% B𝒚: − >𝑭?(𝒛9") + 𝛾)$% 𝜕𝑭? 𝜕𝑤⁄ + 𝜷?)$%AE 

𝒛9" = F

𝑥"
𝑤" + 𝛾)$%
𝛾)$%
𝜷)$%

G 

𝒚: = H
𝒚
𝑥(I 

𝑭?(𝒛9") = J𝑭(𝒛")𝑥"
K 

𝜷?)$% = H𝜷)$%0 I 

𝑲? = H𝜕𝑭 𝜕𝑥⁄
1

𝜕𝑭 𝜕𝑤⁄
0

𝜕𝑭 𝜕𝑤⁄
0

𝑰
𝟎I 

𝑺@ =

⎣
⎢
⎢
⎢
⎡𝑺" + J

0 0
0 𝑢*#$!

+ K 𝟎 𝟎

𝟎 𝑢*#$!
+ 𝟎

𝟎 𝟎 𝑺,#$!⎦
⎥
⎥
⎥
⎤
 

𝑺@# = J
𝑺# 0
0 𝑢(+

K 

𝒛9) = F

𝑥1)
𝑤U)
𝛾)
𝜷)

G 

Eq. 3    

The form of this extended retrieval is identical to Eq. 1., and Eq. 3 is written explicitly to 

show how extension of the state and observation vectors leads to extended forward model, 

partial derivative and error covariance matrices. After the retrieval of the extended state 

vector for the 𝑖th match, the updated parameters are passed to the next randomly selected 

match, and the parameters are thus progressively updated. The principle is analogous to 

model parameter estimation using Kalman filtering (Kalman 1960) but without any concept 

of continuity in time. Graphs of the evolution of the iterative 𝜷 and 𝛾 parameter estimates 

are inspected to ensure convergence, and 𝑂(10-) iterations are required for a given pass. 

Eq. 3 is written as if 𝜷 and 𝛾 are constants for a given bias-corrected quantity. This would 

not be adequate representation of the systematic dependencies observed. For example, 

the correction of a given brightness temperature may need to depend on factors such as 
satellite zenith angle, slant path integrated water vapour and/or instrumental parameters, 
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for example. Context-dependent corrections are estimated by deriving different parameter 

values from only those matches falling within sub-ranges of auxiliary quantities, and using 

these values to define a piecewise linear correction function.  

For example, the correction of the prior total column water vapour, 𝑤", has been derived 

as a function of its own uncorrected value. The range of 𝑤" in matched data typically ranges 

from close to zero (dry, high-latitude locations) to ~60 kg m-2 (regions of convergence in 

the tropics). This range is split into 𝑛* sub-ranges (hereafter, “bins”, index 𝑗 ∈ Y1. . . 𝑛*[). In 

a given iteration, 𝑖, of Eq. 3, the prior water vapour is interrogated to identify the value, 𝐽, of 

𝑗 (i.e., in which bin 𝑤" lies). 𝛾 actually comprises 𝑛* parameter values, 𝛾., one for each bin, 

and the iteration 𝑖 updates 𝛾./0, while the parameter values 𝛾.10 are not modified. The mean 

prior water vapour in each bin, 𝑤]. is also calculated. The full 𝛾 correction is defined as the 

piecewise linear interpolation with respect to 𝑤" between the (final iterated) values 𝛾>𝑤].A =

𝛾.. Extrapolation is not used, and for 𝑤" < 𝑤]% the correction is fixed at 𝛾(𝑤") = 𝛾%, and 

similarly for 𝑤" > 𝑤]2% the correction is fixed at 𝛾(𝑤") = 𝛾2% .  

Piecewise linear correction is also used for the adjustment of brightness temperature for 

each infrared channel in use. To obtain a correction that accounts for more than one 

dependency, cumulative piecewise linear corrections are calculated. If the 𝑛3 auxiliary 

quantities for the brightness temperature corrections (e.g., satellite zenith angle, etc) are 

𝑞4: 𝑘 ∈ Y1. . . 𝑛3[ and 𝐿5,4(𝑞4) is the piecewise linear function defined by interpolated 

between the derived parameter values 𝛽5,4(𝑞c4,.), then the total brightness temperature 

correction is  

𝛽5 B𝑞%, … , 𝑞2&E = e𝐿5,4

2&

4/%

 Eq. 4    

for the given channel, 𝑐. The choice of auxiliary quantities could in principle differ between 

channels according to insights into any channel-specific problems, but in the present 

implementation the same auxiliary quantities are used for all infrared channels of a given 
sensor.  

To obtain 𝜷 values that add cumulatively (Eq. 4), they are derived sequentially. Correction 

parameters 𝛽5,%(𝑞c%,.) with respect to auxiliary quantity 𝑞% are obtained by iterative 

application of Eq. 3 with no other corrections applied. Then, applying the corresponding 

correction 𝐿5,%(𝑞%) to 𝑭 for each iteration 𝑖, the iterative procedure is applied again for the 

auxiliary quantity 𝑞+, and so on. 
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3.3 Covariance matrix estimation 

The estimation of the bias correction parameters described in the previous section is initially 

done using observation and prior error covariance matrices, 𝑺# and 𝑺", that are obtained 

by experience, expert judgement and information such as sensor noise estimates (from the 

literature or from the onboard calibration processes). It has been noted even in the earliest 

implementations of OE for SST retrieval (Merchant et al. 2008) that it would be preferable 

to have more objective means of determination, and BAOE provides this by adapting 

expressions originally brought together in Desroziers et al. (2005).  

The observation error covariance (which accounts for uncertainty in satellite calibration, 
noise and radiative transfer simulation) is first re-estimated after the bias corrections for the 

brightness temperatures are applied. The first step is to undertake joint retrieval, 𝒛1, of the 

state using the extended observation vector (corrected brightness temperatures and the 
reference data) across the full set of matches. The statistics of the result are then used to 

update 𝑺# using: 

𝑺@g# = h𝑺
g# 𝑫
𝑫! 𝑢1(+

j =
1
2
〈𝒅(7𝒅"7

! + 𝒅"7𝒅(7
!〉 

𝒅(7 = 𝒚: − 𝑭?(𝒛1) − 〈𝒚: − 𝑭?(𝒛1)〉 

𝒅"7 = 𝒚: − (𝑭?(𝒛1) − 𝑲?𝒛9(𝒛1 − 𝒛𝒂)) − 〈𝒚: − (𝑭?(𝒛1) − 𝑲?𝒛9(𝒛1 − 𝒛𝒂))〉 

Eq. 5    

Eq. 5 is formulated explicitly to show use of de-meaned residuals and how to make the 

estimated matrix symmetric. 𝑺g# provides improved observation uncertainty information on 

its diagonal, and information about error correlations via the off-diagonal terms. Satellite 

noise is not expected to be correlated between channels, although there are exceptions, 

e.g., Holl et al. (2019). However, calibration and simulation errors may involve cross-

channel correlations, which previously have been poorly known. This also provides an 

updated estimate, 𝑢1( for the reference data uncertainty, which is useful since it is not 

necessarily well quantified up front, particularly further back in time.  

Instrumental uncertainty expressed as noise in brightness temperatures are typically scene 

dependent, because of non-linearity of the radiance-temperature relationship (which is the 

channel-integrated Planck function). The component of “observation error” that comes from 

the radiative transfer simulation is expected to be variable: the approximations of fast 

radiative transfer simulations are more uncertain when the optical path length from surface 

to sensor increases. It is reasonable, therefore, to estimate 𝑺# as a piecewise linear function 

of a quantity that correlates somewhat with both brightness temperature and optical path 
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length of a quantity that correlates usefully with brightness temperature and infrared optical 

path length. We use the slant-path integrated water vapour (hereafter “WV path”) for this 

purpose (i.e., 𝑤sec	(𝜃), where 𝜃 is the satellite zenith angle). Eq. 5 is applied to subsets of 

the matches falling within bins of WV path to obtain the piecewise linear dependence. 

Having obtained an improved estimate of 𝑺# the next step is to update the prior error 

covariance, 𝑺". For this, a new set of SST retrievals is made, now incorporating the new 

estimates of the observation error covariance as well as the brightness temperature 

corrections. The differences of the retrieved and prior state are used to estimate 𝑺". 

The diagonal of 𝑺" contains the squares of the uncertainty in prior SST and prior TCWV. 

The uncertainty in each depends on the source of prior information, is likely to increase for 

earlier times and may be geographically variable. The possibility of time-dependence is 

incorporated in our implementation only indirectly by estimating 𝑺" separately for different 

sensors. To capture to some degree the possibility of large-scale variations in these 

uncertainties, 𝑺# is estimated for bins of prior SST itself, which varies with latitude and 

correlates with TCWV. This is done by applying Eq. 6 to matches falling within sub-ranges 

of the SST distribution. 

𝑺g" =
1
2
〈(𝑲!𝑲)$%𝑲𝐓	>𝒅"(𝒅"7

! + 𝒅"7𝒅"(
!A𝑲(𝑲!𝑲)$%〉 

𝒅"( = 𝑲(𝒛1 − 𝒛𝒂) − 〈𝑲(𝒛1 − 𝒛𝒂)〉 

Eq. 6    

We also have strong expectations for 𝑺". The value of the prior SST uncertainty should, 

when combined in quadrature with the reference SST uncertainty, correspond closely to 

the standard deviation between the prior and the reference. In our implementation, we 
constrain this to be the case. The off-diagonals should be zero, since we do not expect 

error correlation between SST and TCWV, and in our implementation the implied 

correlation coefficients are inspected to verify they are small (they are generally <0.25 in 

magnitude) and then set to zero. In contrast, the TCWV uncertainty embodied in the 

estimate of 𝑺" is not otherwise well quantified and is used unmodified thereafter. 

Some practical measures to stabilize the calculation of Eq. 5 and Eq. 6 are implemented. 

In evaluating 〈𝒅(7𝒅"7
! + 𝒅"7𝒅(7

!〉, a trimmed mean is used to avoid undue influence of a small 

fraction of outliers. 𝑲!𝑲 is inverted in Eq. 6, and is occasionally (typically for <0.5% of 

matches) ill-conditioned. In our implementation, matches for which the condition number of 

𝑲!𝑲 exceeds 106 are excluded from the evaluation. 
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3.4 Other aspects of implementation 

As described in (Merchant et al. 2020), the sequence of bias correction and updating 

covariance matrices is cycle through iteratively (two complete cycles followed by the final 

bias correction step). This is needed so that the bias corrections and covariance 

parameters have the opportunity to respond to each other during optimization. 

The process is coded semi-automatically. Expert intervention arises in terms of choosing 
the auxiliary quantities used for each sensor. This is based upon inspection of the patterns 

of residual biases seen in untuned EO results obtained before the BAOE process. 

3.5 Preliminary results 

Results for bias correction parameters are presented here for NOAA 8, 9 and 11. Since 

results for covariance matrices are directly relevant to uncertainty evaluation of retrievals, 
these are documented in the end-to-end uncertainty characterisation report (E3UB) v2. 

These results are preliminary because the change in covariance matrices will also modify 

(should improve) the performance of cloud detection. This may require a further cycle of 

parameterisation to reveal the full benefit (this is to be determined). 

3.5.1 Impact of parameterising OE 

Before the BAOE cycle of parameterisation was run, the “out-of-the-box” performance of 

OE is assessed on quality level 5 drifting-buoy-AVHRR matches from the SST CCI matchup 

data system (Block et al. 2018). This OE uses the fast radiative transfer including (for these 

sensors) climatological aerosol as described in section 2. In that sense the “untuned” OE 
is already an improvement on the CDR v2 OE (although “external” SST correction 

algorithms used in CDR v2 are omitted). The before-and-after results are shown in Table 

2. The NOAA 8 and 9 results apply for their respective mission lifetimes and the NOAA 11 

results to the years 1988 to 1990 inclusive. (For sensors that last more than 3 years, BAOE 

will be applied to subsets of the mission lifetime.) 

It is notable how few matches there are with NOAA 8 AVHRR. This AVHRR has only night-

time observations, since its thermal channels comprise only the 3.7 and 11 um channels. 

There were also relatively fewer drifting buoys at any given time during its mission. We 
have not used NOAA 8 in CDR v2, and the decision for CDR v3 requires further analysis. 

The NOAA 9 and NOAA 11 results represented the combined statistics for day and night 

matches. Even untuned, these sensors’ biases overall are more or less within the target 

(0.1 K), although it should be noted that the retrievals are started from a debiassed prior, 
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which helps this to be the case. Nonetheless, the biases are improved overall. More 

important than the modest bias improvements, however, is the lack of statistically important 

systematic variations in bias that is achieved, shown in some illustrative plots for NOAA 11 

in Figure 1. 

Table 2: Summary effect of bias aware parameterisation 

  Untuned OE / cK Bias-aware OE / cK 

Sensor  N Mean Standard 
deviation 

Median Robust 
SD 

Mean Standard 
deviation 

Median Robust 
SD 

N 08 876 15 65 16 64 0 58 0 55 

N 09 48088 9 64 13 54 0 61 5 50 

N 11 45275 6 50 6 44 0 49 0 42 

 

 

 

Figure 1: Example dependence plots for NOAA 11 after BAOE. Vertical axes are all 
satellite-reference differences in kelvin. Solid lines show binned means of the data, 

and dashed lines their standard deviation. Points are additionally coloured by a 
further variable. Top left: differences against latitude. Top right: differences against 

TCWV. Lower left: differences against prior SST. Lower right, differences against 
time as year fraction.   
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3.5.2 Brightness temperature bias corrections  

The 𝜷 parameters for each sensor are defined against up to four auxiliary quantities, which 

may differ between sensors. For example, some sensors (e.g. NOAA 8) exhibit strong bias 

across track in the untuned data (as an asymmetric function of element number) whereas 

tuning with respect to element is not needed for every case. 

The bias correction results are shown in the following figures. 

 

 

Figure 2. Brightness temperature correction coefficients for NOAA 8. These are 
piecewise linear functions against (top left) the simulated prior brightness 

temperature, (top right) the across-track element, (lower left) the instrument 
temperature and (lower right) latitude. 
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Figure 3. As Figure 2 but for NOAA 9 against the following respective auxiliary 
quantities: simulated brightness temperature, satellite zenith angle, instrument 

temperature, latitude. 

 

 

Figure 4. As Figure 2 but for NOAA 9 against the following respective auxiliary 
quantities: simulated brightness temperature, instrument temperature, solar zenith, 

latitude. 
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It is notable that all the channels in a given sensor tend to behave similarly in terms of 

functional variation. This could arise either because of calibration effects or simulation 

effects that tend to be in common with respect to the various auxiliary quantities. 

3.5.3 Water vapour correction 

The TCWV from re-analysis represents the all-sky quantity, whereas for IR SST retrieval 
we are considering only clear-sky areas, where humidity is below saturation level unlike in 

clouds. Therefore, it is reasonable to expect that the TCWV is overestimated for our 

application. It is therefore of interest that for all the sensors, the estimated TCWV correction 

dependence is such that the TCWV is corrected to lower values.  

 

Figure 5.  Prior TCWV bias (for clear sky areas) derived from three sensors. 
Correction in kg m-2 versus prior value in kg m-2. 

Figure 5 shows the prior TCWV correction for the three platforms. Despite the potential for 

interaction of calibration, simulation and prior errors in the parameterisation process, the 

estimates are highly consistent for water vapour loadings in excess of 15 kg m-2, with some 

divergence for drier atmospheres. Apart from any change in the bias over time, we expect 

this bias function to be relatively common between sensors, as it is independent of 
instrument. It is clear that for drier atmospheres there is some variation between the 

estimates, but it is feasible that the average prior bias correction over these and further 

sensors to be analysed may provide a better estimate than an individual solution. This will 

be considered for a future iteration of the process.  
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4. CONCLUSION 
Algorithm developments in radiative transfer simulation and use in optimal estimation have 

been presented for improving SSTs for the CDR v3. The analyses shown for the three 
AVHRRs presented will be extended to all the NOAA platforms and used in L1 to L4 

processing. The full set of results will be reflected in the v3 algorithm theoretical basis 

document that will be prepared for the dataset release, planned for early 2022. The 

effectiveness of the error covariance matrices in obtaining OE uncertainty estimates will be 

assessed via validation activities (validation of the uncertainty behaviours). 
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